BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 2553113)

  • 1. Hyperosmotic relaxation lysis of chromaffin granules is caused by interactions between the granular membrane and intragranular vesicles.
    Engel J; Donath E; Ermakov YA; Meyer HW; Richter W
    Biochim Biophys Acta; 1989 Oct; 985(2):111-9. PubMed ID: 2553113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two different types of lysis of chromaffin granules characterised by freeze-fracture electron microscopy and photon correlation spectroscopy.
    Engel J; Ermakov YA; Richter W; Donath E
    Biochim Biophys Acta; 1990 Oct; 1028(3):236-44. PubMed ID: 2223797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the interaction between chromaffin granule membranes and intragranular vesicles--theory and analysis of freeze-fracture micrographs.
    Engel J; Pastushenko VF; Richter W; Donath E
    Biorheology; 1991; 28(1-2):75-87. PubMed ID: 2049534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core structure, internal osmotic pressure and irreversible structural changes of chromaffin granules during osmometer behaviour.
    Südhof TC
    Biochim Biophys Acta; 1982 Jan; 684(1):27-39. PubMed ID: 7055554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intragranular vesicles: new organelles in the secretory granules of adrenal chromaffin cells.
    Ornberg RL; Duong LT; Pollard HB
    Cell Tissue Res; 1986; 245(3):547-53. PubMed ID: 3757016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics and determinants of osmotic lysis in chromaffin granules.
    Südhof TC; Morris SJ
    Biochim Biophys Acta; 1983 May; 730(2):207-16. PubMed ID: 6849904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-fracture study of the chromaffin cell during exocytosis: evidence for connections between the plasma membrane and secretory granules and for movements of plasma membrane-associated particles.
    Aunis D; Hesketh JE; Devilliers G
    Cell Tissue Res; 1979 Apr; 197(3):433-41. PubMed ID: 455408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organisation of the proteins of the chromaffin granule membrane.
    Abbs MT; Phillips JH
    Biochim Biophys Acta; 1980 Jan; 595(2):200-21. PubMed ID: 7352995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro reconstitution of chromaffin granule-cytoskeleton interactions: ionic factors influencing the association of F-actin with purified chromaffin granule membranes.
    Fowler VM; Pollard HB
    J Cell Biochem; 1982; 18(3):295-311. PubMed ID: 7068784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synexin-mediated fusion of bovine chromaffin granule ghosts. Effect of pH.
    Stutzin A; Cabantchik ZI; Lelkes PI; Pollard HB
    Biochim Biophys Acta; 1987 Nov; 905(1):205-12. PubMed ID: 2960380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural and cytochemical characterization of adrenal medullary plasma membrane vesicles and their interaction with chromaffin granules.
    Rosenheck K; Plattner H
    Biochim Biophys Acta; 1986 Apr; 856(2):373-82. PubMed ID: 3955049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle segregation in chromaffin granule membranes by forced physical contact.
    Schuler G; Plattner H; Aberer W; Winkler H
    Biochim Biophys Acta; 1978 Nov; 513(2):244-54. PubMed ID: 718893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation by Ca2+ of membrane elasticity of bovine chromaffin granules.
    Miyamoto S; Fujime S
    FEBS Lett; 1988 Sep; 238(1):67-70. PubMed ID: 3169256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exocytosis of bovine chromaffin granules in Ficoll captured by rapid freezing.
    Furuya S; Edwards C; Ornberg RL
    J Electron Microsc (Tokyo); 1989; 38(2):143-7. PubMed ID: 2769145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for an ascorbate shuttle for the transfer of reducing equivalents across chromaffin granule membranes.
    Beers MF; Johnson RG; Scarpa A
    J Biol Chem; 1986 Feb; 261(6):2529-35. PubMed ID: 3949732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis.
    Hampton RY; Holz RW
    J Cell Biol; 1983 Apr; 96(4):1082-8. PubMed ID: 6833392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessibility of phospholipids in the chromaffin granule membrane.
    Buckland RM; Radda GK; Shennan CD
    Biochim Biophys Acta; 1978 Nov; 513(3):321-37. PubMed ID: 102348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensile strength of the chromaffin granule membrane.
    Hiram Y; Nir A; Zinder O
    Biophys J; 1982 Jul; 39(1):65-9. PubMed ID: 7104452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exocytotic exposure and recycling of membrane antigens of chromaffin granules: ultrastructural evaluation after immunolabeling.
    Patzak A; Winkler H
    J Cell Biol; 1986 Feb; 102(2):510-5. PubMed ID: 3080437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semidehydroascorbic acid as an intermediate in norepinephrine biosynthesis in chromaffin granules.
    Dhariwal KR; Black CD; Levine M
    J Biol Chem; 1991 Jul; 266(20):12908-14. PubMed ID: 1649168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.