BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 25531139)

  • 1. Mutant poisoning demonstrates a nonsequential mechanism for digestion of double-stranded DNA by λ exonuclease trimers.
    Pan X; Yan J; Patel A; Wysocki VH; Bell CE
    Biochemistry; 2015 Jan; 54(3):942-51. PubMed ID: 25531139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Structure-Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers.
    Pan X; Smith CE; Zhang J; McCabe KA; Fu J; Bell CE
    Biochemistry; 2015 Oct; 54(39):6139-48. PubMed ID: 26361255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of λ exonuclease in complex with DNA and Ca(2+).
    Zhang J; Pan X; Bell CE
    Biochemistry; 2014 Dec; 53(47):7415-25. PubMed ID: 25370446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of lambda exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity.
    Zhang J; McCabe KA; Bell CE
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11872-7. PubMed ID: 21730170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The specificity of lambda exonuclease. Interactions with single-stranded DNA.
    Sriprakash KS; Lundh N; Huh MM-O ; Radding CM
    J Biol Chem; 1975 Jul; 250(14):5438-45. PubMed ID: 1141237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of the exonuclease associated with calf DNA polymerase.
    Sabatino RD; Myers TW; Bambara RA
    Cancer Res; 1990 Sep; 50(17):5340-4. PubMed ID: 2167154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch.
    Singh K; Modak MJ
    Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digestion of Dynamic Substrate by Exonuclease Reveals High Single-Mismatch Selectivity.
    Yu Y; Ma L; Li L; Deng Y; Xu L; Liu H; Xiao L; Su X
    Anal Chem; 2018 Nov; 90(22):13655-13662. PubMed ID: 30379064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.
    Schönbrunner NJ; Fiss EH; Budker O; Stoffel S; Sigua CL; Gelfand DH; Myers TW
    Biochemistry; 2006 Oct; 45(42):12786-95. PubMed ID: 17042497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage of double-stranded DNA by the intrinsic 3'-5' exonuclease activity of DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus at high temperature.
    Lou H; Duan Z; Sun T; Huang L
    FEMS Microbiol Lett; 2004 Feb; 231(1):111-7. PubMed ID: 14769474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An invariant lysine residue is involved in catalysis at the 3'-5' exonuclease active site of eukaryotic-type DNA polymerases.
    de Vega M; Ilyina T; Lázaro JM; Salas M; Blanco L
    J Mol Biol; 1997 Jul; 270(1):65-78. PubMed ID: 9231901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis.
    Yang W; Chen WY; Wang H; Ho JW; Huang JD; Woo PC; Lau SK; Yuen KY; Zhang Q; Zhou W; Bartlam M; Watt RM; Rao Z
    Nucleic Acids Res; 2011 Dec; 39(22):9803-19. PubMed ID: 21893587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functions of multiple exonucleases are essential for cell viability, DNA repair and homologous recombination in recD mutants of Escherichia coli.
    Dermić D
    Genetics; 2006 Apr; 172(4):2057-69. PubMed ID: 16452142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of N and C-terminal tails in DNA binding and assembly in Dps: structural studies of Mycobacterium smegmatis Dps deletion mutants.
    Roy S; Saraswathi R; Gupta S; Sekar K; Chatterji D; Vijayan M
    J Mol Biol; 2007 Jul; 370(4):752-67. PubMed ID: 17543333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteriophage P22 Abc2 protein binds to RecC increases the 5' strand nicking activity of RecBCD and together with lambda bet, promotes Chi-independent recombination.
    Murphy KC
    J Mol Biol; 2000 Feb; 296(2):385-401. PubMed ID: 10669596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A possible mechanism for the dynamics of transition between polymerase and exonuclease sites in a high-fidelity DNA polymerase.
    Xie P
    J Theor Biol; 2009 Aug; 259(3):434-9. PubMed ID: 19389410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An endonucleolytic activity of nuclease TT1 specific for superhelical DNA.
    Takahashi M; Kobayashi M; Uchida T
    Nucleic Acids Symp Ser; 1979; (6):s135-8. PubMed ID: 232756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for DNA recognition and nuclease processing by the Mre11 homologue SbcD in double-strand breaks repair.
    Liu S; Tian LF; Liu YP; An XM; Tang Q; Yan XX; Liang DC
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):299-309. PubMed ID: 24531464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.