These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25531270)

  • 1. Genomic tools to assist breeding for drought tolerance.
    Langridge P; Reynolds MP
    Curr Opin Biotechnol; 2015 Apr; 32():130-135. PubMed ID: 25531270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducing drought tolerance in plants: recent advances.
    Ashraf M
    Biotechnol Adv; 2010; 28(1):169-83. PubMed ID: 19914371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics-based precision breeding approaches to improve drought tolerance in rice.
    Swamy BP; Kumar A
    Biotechnol Adv; 2013 Dec; 31(8):1308-18. PubMed ID: 23702083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing High-throughput Phenotyping and Genotyping for Enhanced Drought Tolerance in Crop Plants.
    Bhat JA; Deshmukh R; Zhao T; Patil G; Deokar A; Shinde S; Chaudhary J
    J Biotechnol; 2020 Dec; 324():248-260. PubMed ID: 33186658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product.
    Cooper M; Gho C; Leafgren R; Tang T; Messina C
    J Exp Bot; 2014 Nov; 65(21):6191-204. PubMed ID: 24596174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of Drought Tolerance in Rice (
    Sahebi M; Hanafi MM; Rafii MY; Mahmud TMM; Azizi P; Osman M; Abiri R; Taheri S; Kalhori N; Shabanimofrad M; Miah G; Atabaki N
    Biomed Res Int; 2018; 2018():3158474. PubMed ID: 30175125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans.
    Valliyodan B; Ye H; Song L; Murphy M; Shannon JG; Nguyen HT
    J Exp Bot; 2017 Apr; 68(8):1835-1849. PubMed ID: 27927997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and genomic tools to improve drought tolerance in wheat.
    Fleury D; Jefferies S; Kuchel H; Langridge P
    J Exp Bot; 2010 Jul; 61(12):3211-22. PubMed ID: 20525798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops.
    Mir RR; Zaman-Allah M; Sreenivasulu N; Trethowan R; Varshney RK
    Theor Appl Genet; 2012 Aug; 125(4):625-45. PubMed ID: 22696006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought-resistant cereals: impact on water sustainability and nutritional quality.
    Thomas WT
    Proc Nutr Soc; 2015 Aug; 74(3):191-7. PubMed ID: 25702698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits.
    Fan Y; Shabala S; Ma Y; Xu R; Zhou M
    BMC Genomics; 2015 Feb; 16(1):43. PubMed ID: 25651931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and molecular approaches to improve drought resistance in soybean.
    Manavalan LP; Guttikonda SK; Tran LS; Nguyen HT
    Plant Cell Physiol; 2009 Jul; 50(7):1260-76. PubMed ID: 19546148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel.
    Zhang X; Warburton ML; Setter T; Liu H; Xue Y; Yang N; Yan J; Xiao Y
    Theor Appl Genet; 2016 Aug; 129(8):1449-63. PubMed ID: 27121008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Improvement of Wheat for Drought Tolerance: Progress, Challenges and Opportunities.
    Bapela T; Shimelis H; Tsilo TJ; Mathew I
    Plants (Basel); 2022 May; 11(10):. PubMed ID: 35631756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress.
    Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V
    J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conceptual framework for drought phenotyping during molecular breeding.
    Salekdeh GH; Reynolds M; Bennett J; Boyer J
    Trends Plant Sci; 2009 Sep; 14(9):488-96. PubMed ID: 19716744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation and impact of drought-stress patterns across upland rice target population of environments in Brazil.
    Heinemann AB; Barrios-Perez C; Ramirez-Villegas J; Arango-LondoƱo D; Bonilla-Findji O; Medeiros JC; Jarvis A
    J Exp Bot; 2015 Jun; 66(12):3625-38. PubMed ID: 25873681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing drought tolerance in C(4) crops.
    Lopes MS; Araus JL; van Heerden PD; Foyer CH
    J Exp Bot; 2011 May; 62(9):3135-53. PubMed ID: 21511912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen.
    Sadras VO; Richards RA
    J Exp Bot; 2014 May; 65(8):1981-95. PubMed ID: 24638898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.