These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 25531275)
1. Monolithic polymeric aerogels with VOCs sorbent nanoporous crystalline and water sorbent amorphous phases. Venditto V; Pellegrino M; Califano R; Guerra G; Daniel C; Ambrosio L; Borriello A ACS Appl Mater Interfaces; 2015 Jan; 7(2):1318-26. PubMed ID: 25531275 [TBL] [Abstract][Full Text] [Related]
2. Nanoporous-Crystalline Poly(2,6-dimethyl-1,4-phenylene)oxide Aerogels with Selectively Sulfonated Amorphous Phase for Fast VOC Sorption from Water. Pellegrino M; Fiumarella A; Moretta A; Daniel C; Trifuoggi M; Borriello A; Venditto V Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269177 [TBL] [Abstract][Full Text] [Related]
3. Monolithic nanoporous crystalline aerogels. Daniel C; Longo S; Ricciardi R; Reverchon E; Guerra G Macromol Rapid Commun; 2013 Aug; 34(15):1194-207. PubMed ID: 23913316 [TBL] [Abstract][Full Text] [Related]
4. Monolithic aerogels based on poly(2,6-diphenyl-1,4-phenylene oxide) and syndiotactic polystyrene. Longo S; Vitillo JG; Daniel C; Guerra G ACS Appl Mater Interfaces; 2013 Jun; 5(12):5493-9. PubMed ID: 23701278 [TBL] [Abstract][Full Text] [Related]
5. Storage of hydrogen as a guest of a nanoporous polymeric crystalline phase. Figueroa-Gerstenmaier S; Daniel C; Milano G; Guerra G; Zavorotynska O; Vitillo JG; Zecchina A; Spoto G Phys Chem Chem Phys; 2010; 12(20):5369-74. PubMed ID: 20379574 [TBL] [Abstract][Full Text] [Related]
7. Highly Robust and Selective System for Water Pollutants Removal: How to Transform a Traditional Photocatalyst into a Highly Robust and Selective System for Water Pollutants Removal. Sacco O; Vaiano V; Daniel C; Navarra W; Venditto V Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31652789 [TBL] [Abstract][Full Text] [Related]
8. Aerogels and polymorphism of isotactic poly(4-methyl-pentene-1). Daniel C; Vitillo JG; Fasano G; Guerra G ACS Appl Mater Interfaces; 2011 Apr; 3(4):969-77. PubMed ID: 21391589 [TBL] [Abstract][Full Text] [Related]
9. Molecular sensing by nanoporous crystalline polymers. Pilla P; Cusano A; Cutolo A; Giordano M; Mensitieri G; Rizzo P; Sanguigno L; Venditto V; Guerra G Sensors (Basel); 2009; 9(12):9816-57. PubMed ID: 22303150 [TBL] [Abstract][Full Text] [Related]
10. Nanoporous Crystalline Composite Aerogels with Reduced Graphene Oxide. Daniel C; Nagendra B; Acocella MR; Cascone E; Guerra G Molecules; 2020 Nov; 25(22):. PubMed ID: 33182782 [TBL] [Abstract][Full Text] [Related]
11. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide. Longo S; Mauro M; Daniel C; Galimberti M; Guerra G Front Chem; 2013; 1():28. PubMed ID: 24790956 [TBL] [Abstract][Full Text] [Related]
12. Tailoring of morphology and surface properties of syndiotactic polystyrene aerogels. Wang X; Jana SC Langmuir; 2013 May; 29(18):5589-98. PubMed ID: 23573990 [TBL] [Abstract][Full Text] [Related]
13. Electrostatically Active Polymer Hybrid Aerogels for Airborne Nanoparticle Filtration. Kim SJ; Raut P; Jana SC; Chase G ACS Appl Mater Interfaces; 2017 Feb; 9(7):6401-6410. PubMed ID: 28177211 [TBL] [Abstract][Full Text] [Related]
14. Synergistic hybrid organic-inorganic aerogels. Wang X; Jana SC ACS Appl Mater Interfaces; 2013 Jul; 5(13):6423-9. PubMed ID: 23773123 [TBL] [Abstract][Full Text] [Related]
15. Monomeric and Dimeric Carboxylic Acid in Crystalline Cavities and Channels of Delta and Epsilon Forms of Syndiotactic Polystyrene. Cozzolino A; Monaco G; Daniel C; Rizzo P; Guerra G Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641146 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of a Crystalline and Transparent Aerogel Composed of Ni-Al Layered Double Hydroxide Nanoparticles through Crystallization from Amorphous Hydrogel. Takemoto M; Tokudome Y; Noguchi D; Ueoka R; Kanamori K; Okada K; Murata H; Nakahira A; Takahashi M Langmuir; 2020 Aug; 36(32):9436-9442. PubMed ID: 32683867 [TBL] [Abstract][Full Text] [Related]
17. Formation of nanoporous aerogels from wheat starch. Ubeyitogullari A; Ciftci ON Carbohydr Polym; 2016 Aug; 147():125-132. PubMed ID: 27178916 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels. Wan C; Lu Y; Jiao Y; Jin C; Sun Q; Li J Carbohydr Polym; 2015 Mar; 118():115-8. PubMed ID: 25542115 [TBL] [Abstract][Full Text] [Related]
19. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels. DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. Standeker S; Novak Z; Knez Z J Colloid Interface Sci; 2007 Jun; 310(2):362-8. PubMed ID: 17350031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]