BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25531303)

  • 1. Phenotypic characteristics of nasal mast cells in a mouse model of allergic rhinitis.
    Li P; Cui Y; Song G; Wang Z; Zhang Q
    ORL J Otorhinolaryngol Relat Spec; 2014; 76(6):303-13. PubMed ID: 25531303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of hypoxia-inducible factor 1α in allergic rhinitis.
    Mo JH; Kim JH; Lim DJ; Kim EH
    Am J Rhinol Allergy; 2014; 28(2):e100-6. PubMed ID: 24717944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H2-Eb1 expression is upregulated in the nasal mucosa of allergic rhinitis.
    Zhang Y; Feng J; Sun J; Wang H; Zhang C; Liu H; Zhang H
    Asian Pac J Allergy Immunol; 2014 Dec; 32(4):308-15. PubMed ID: 25543041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis.
    Nam SY; Chung CK; Seo JH; Rah SY; Kim HM; Jeong HJ
    Int Immunopharmacol; 2014 Nov; 23(1):273-82. PubMed ID: 25242385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allergen-specific regulation of allergic rhinitis in mice by intranasal exposure to IgG1 monoclonal antibody Fab fragments against pathogenic allergen.
    Matsuoka D; Mizutani N; Sae-Wong C; Yoshino S
    Immunol Lett; 2014 Sep; 161(1):149-56. PubMed ID: 24954639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiallergic effect of gami-hyunggyeyeongyotang on ovalbumin-induced allergic rhinitis in mouse and human mast cells.
    Im YS; Lee B; Kim EY; Min JH; Song DU; Lim JM; Eom JW; Cho HJ; Sohn Y; Jung HS
    J Chin Med Assoc; 2016 Apr; 79(4):185-94. PubMed ID: 26852212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RORA Overexpression Alleviates Nasal Mucosal Injury and Enhances Red Blood Cell Immune Adhesion Function in a Mouse Model of Allergic Rhinitis via Inactivation of the Wnt/β-Catenin Signaling Pathway.
    Li J; Xue K; Zheng Y; Wang Y; Xu C
    Int Arch Allergy Immunol; 2019; 180(2):79-90. PubMed ID: 31340215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skullcapflavone II attenuates ovalbumin-induced allergic rhinitis through the blocking of Th2 cytokine production and mast cell histamine release.
    Bui TT; Piao CH; Song CH; Chai OH
    Int Immunopharmacol; 2017 Nov; 52():77-84. PubMed ID: 28886581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Expression and significance of Notch1-Jagged1 in allergic rhinitis].
    Jiao WE; Wei JF; Xu S; Kong YG; Xu Y; Tao ZZ; Chen SM
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2018 Oct; 53(10):733-739. PubMed ID: 30347531
    [No Abstract]   [Full Text] [Related]  

  • 10. Compound 48/80, a Mast Cell Stimulator, Enhances Synthesis of IgE and IgG Induced by Intranasal Application of Ovalbumin in Mice.
    Matsui N; Ito D; Takabatake Y; Nashioka E; Tada S; Kanagawa M; Fukuishi N; Akagi M
    Biol Pharm Bull; 2015; 38(12):1954-9. PubMed ID: 26632186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of lentivirus-mediated CCR3 RNA interference on the function of mast cells of allergic rhinitis in mice.
    Wu S; Tang S; Peng H; Jiang Y; Liu Y; Wu Z; Liu Q; Zhu X
    Int Immunopharmacol; 2020 Jan; 78():106011. PubMed ID: 31776094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ -activated K+ channel-3.1 blocker TRAM-34 alleviates murine allergic rhinitis.
    Lin H; Zheng C; Li J; Yang C; Hu L
    Int Immunopharmacol; 2014 Dec; 23(2):642-8. PubMed ID: 25466273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice.
    Aswar U; Shintre S; Chepurwar S; Aswar M
    Pharm Biol; 2015; 53(9):1358-66. PubMed ID: 25868617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intranasal Administration of Lentiviral miR-135a Regulates Mast Cell and Allergen-Induced Inflammation by Targeting GATA-3.
    Deng YQ; Yang YQ; Wang SB; Li F; Liu MZ; Hua QQ; Tao ZZ
    PLoS One; 2015; 10(9):e0139322. PubMed ID: 26418311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effect of baicalin on allergic response in ovalbumin-induced allergic rhinitis guinea pigs and lipopolysaccharide-stimulated human mast cells.
    Zhou YJ; Wang H; Sui HH; Li L; Zhou CL; Huang JJ
    Inflamm Res; 2016 Aug; 65(8):603-12. PubMed ID: 27043920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Dendritic Cell Subset Manipulation on Airway Allergy in a Mouse Model.
    Murakami R; Nakagawa Y; Shimizu M; Wakabayashi A; Negishi Y; Hiroi T; Okubo K; Takahashi H
    Int Arch Allergy Immunol; 2015; 168(4):219-32. PubMed ID: 26855055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beneficial effects of chelidonic acid on a model of allergic rhinitis.
    Oh HA; Kim HM; Jeong HJ
    Int Immunopharmacol; 2011 Jan; 11(1):39-45. PubMed ID: 20974310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions.
    Oh HA; Park CS; Ahn HJ; Park YS; Kim HM
    Exp Biol Med (Maywood); 2011 Jan; 236(1):99-106. PubMed ID: 21239739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preventive Effect of Bupleurum chinense on Nasal Inflammation via Suppressing T Helper Type 2, Eosinophil and Mast Cell Activation.
    Bui TT; Piao CH; Hyeon E; Fan Y; Choi DW; Jung SY; Jang BH; Shin HS; Song CH; Chai OH
    Am J Chin Med; 2019; 47(2):405-421. PubMed ID: 30845812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-allergic function of α-Tocopherol is mediated by suppression of PI3K-PKB activity in mast cells in mouse model of allergic rhinitis.
    Wu G; Zhu H; Wu X; Liu L; Ma X; Yuan Y; Fu X; Zhang L; Lv Y; Li D; Liu J; Lu J; Yu Y; Li M
    Allergol Immunopathol (Madr); 2020; 48(4):395-400. PubMed ID: 32334909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.