These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25531603)

  • 1. THz-bandwidth photonic Hilbert transformers based on fiber Bragg gratings in transmission.
    Fernández-Ruiz MR; Wang L; Carballar A; Burla M; Azaña J; LaRochelle S
    Opt Lett; 2015 Jan; 40(1):41-4. PubMed ID: 25531603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.
    Ashrafi R; Azaña J
    Opt Lett; 2012 Jul; 37(13):2604-6. PubMed ID: 22743469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication.
    Sima C; Gates JC; Holmes C; Mennea PL; Zervas MN; Smith PG
    Opt Lett; 2013 Sep; 38(17):3448-51. PubMed ID: 23988981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic Hilbert transformers based on laterally apodized integrated waveguide Bragg gratings on a SOI wafer.
    Bazargani HP; Burla M; Chrostowski L; Azaña J
    Opt Lett; 2016 Nov; 41(21):5039-5042. PubMed ID: 27805680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating.
    Li M; Yao J
    Opt Lett; 2010 Jan; 35(2):223-5. PubMed ID: 20081975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon.
    Burla M; Li M; Cortés LR; Wang X; Fernández-Ruiz MR; Chrostowski L; Azaña J
    Opt Lett; 2014 Nov; 39(21):6241-4. PubMed ID: 25361324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable, nondispersive optical filter using photonic Hilbert transformation.
    Bazargani HP; Fernández-Ruiz Mdel R; Azaña J
    Opt Lett; 2014 Sep; 39(17):5232-5. PubMed ID: 25166117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated reconfigurable photonic filters based on interferometric fractional Hilbert transforms.
    Sima C; Cai B; Liu B; Gao Y; Yu Y; Gates JC; Zervas MN; Smith PGR; Liu D
    Appl Opt; 2017 Oct; 56(28):7978-7984. PubMed ID: 29047786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis.
    Asghari MH; Azaña J
    Opt Lett; 2009 Feb; 34(3):334-6. PubMed ID: 19183649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings.
    Cheng R; Chrostowski L
    Opt Lett; 2018 Mar; 43(5):1031-1034. PubMed ID: 29489773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques.
    Ricchiuti AL; Barrera D; Sales S; Thevenaz L; Capmany J
    Opt Express; 2013 Nov; 21(23):28175-81. PubMed ID: 24514329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control.
    Chung KM; Dong L; Lu C; Tam HY
    Opt Express; 2011 Jun; 19(13):12664-72. PubMed ID: 21716509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single-channel 1.28 Tbit/s-58 km transmission in the 1.1 μm band with wideband GVD and slope compensation.
    Koizumi K; Yoshida M; Hirooka T; Nakazawa M
    Opt Express; 2013 Nov; 21(23):29055-64. PubMed ID: 24514421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission.
    Liu X; Shu X
    Appl Opt; 2017 Aug; 56(24):6714-6719. PubMed ID: 29048008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wideband and continuously-tunable fractional photonic Hilbert transformer based on a single high-birefringence planar Bragg grating.
    Zhang Z; Sima C; Liu B; Cai B; Gao Y; Zhang M; Shen L; Yu Y; Huang M; Lian Z; Posner MT; Gates JC; Smith PGR; Liu D
    Opt Express; 2018 Aug; 26(16):20450-20458. PubMed ID: 30119355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration.
    Li M; Janner D; Yao J; Pruneri V
    Opt Express; 2009 Oct; 17(22):19798-807. PubMed ID: 19997201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable wavelength-tunable second-order optical temporal differentiator based on a linearly chirped fiber Bragg grating and a digital thermal controller.
    Zhang H; Tang M; Xie Y; Fu S; Liu D; Shum PP
    Opt Lett; 2014 Apr; 39(7):2004-7. PubMed ID: 24686660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.
    Liu W; Yao J
    Opt Lett; 2014 Feb; 39(4):922-4. PubMed ID: 24562242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Picosecond optical signal processing based on transmissive fiber Bragg gratings.
    Fernández-Ruiz MR; Li M; Dastmalchi M; Carballar A; LaRochelle S; Azaña J
    Opt Lett; 2013 Apr; 38(8):1247-9. PubMed ID: 23595447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2 ~ 5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating.
    Lee JH; Chang Y; Han YG; Kim S; Lee S
    Opt Express; 2004 Aug; 12(17):3900-5. PubMed ID: 19483924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.