BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25531758)

  • 1. Simulation of biomass yield and soil organic carbon under bioenergy sorghum production.
    Dou F; Wight JP; Wilson LT; Storlien JO; Hons FM
    PLoS One; 2014; 9(12):e115598. PubMed ID: 25531758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization.
    Sainju UM; Singh BP; Whitehead WF; Wang S
    J Environ Qual; 2006; 35(4):1507-17. PubMed ID: 16825471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nitrogen fertilization and bioenergy crop type on topsoil organic carbon and total Nitrogen contents in middle Tennessee USA.
    Li J; Jian S; Lane CS; Lu Y; He X; Wang G; Mayes MA; Dzantor KE; Hui D
    PLoS One; 2020; 15(3):e0230688. PubMed ID: 32226037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil carbon sequestration in rainfed production systems in the semiarid tropics of India.
    Srinivasarao Ch; Lal R; Kundu S; Babu MB; Venkateswarlu B; Singh AK
    Sci Total Environ; 2014 Jul; 487():587-603. PubMed ID: 24210647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of agricultural management practices on soil organic carbon: simulation of Australian wheat systems.
    Zhao G; Bryan BA; King D; Luo Z; Wang E; Song X; Yu Q
    Glob Chang Biol; 2013 May; 19(5):1585-97. PubMed ID: 23504769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A long-term nitrogen fertilizer gradient has little effect on soil organic matter in a high-intensity maize production system.
    Brown KH; Bach EM; Drijber RA; Hofmockel KS; Jeske ES; Sawyer JE; Castellano MJ
    Glob Chang Biol; 2014 Apr; 20(4):1339-50. PubMed ID: 24395533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling long-term effects of hairy vetch cultivation on cotton production in Northwest Louisiana.
    Ku HH; Jeong C; Colyer P
    Sci Total Environ; 2018 May; 624():744-752. PubMed ID: 29272843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of different cover crops on C and N cycling in sorghum NT systems.
    Frasier I; Quiroga A; Noellemeyer E
    Sci Total Environ; 2016 Aug; 562():628-639. PubMed ID: 27107651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating long-term and residual effects of nitrogen fertilization on corn yields, soil carbon sequestration, and soil nitrogen dynamics.
    He X; Izaurralde RC; Vanotti MB; Williams JR; Thomson AM
    J Environ Qual; 2006; 35(4):1608-19. PubMed ID: 16825481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects.
    Schnell RW; Vietor DM; Provin TL; Munster CL; Capareda S
    J Environ Qual; 2012; 41(4):1044-51. PubMed ID: 22751046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term cropping system effects on carbon sequestration in eastern Oregon.
    Machado S; Rhinhart K; Petrie S
    J Environ Qual; 2006; 35(4):1548-53. PubMed ID: 16825475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tillage, cropping systems, and nitrogen fertilizer source effects on soil carbon sequestration and fractions.
    Sainju UM; Senwo ZN; Nyakatawa EZ; Tazisong IA; Reddy KC
    J Environ Qual; 2008; 37(3):880-8. PubMed ID: 18453410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.
    Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W
    J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water and nitrogen management effects on semiarid sorghum production and soil trace gas flux under future climate.
    Duval BD; Ghimire R; Hartman MD; Marsalis MA
    PLoS One; 2018; 13(4):e0195782. PubMed ID: 29672548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercropping enhances soil carbon and nitrogen.
    Cong WF; Hoffland E; Li L; Six J; Sun JH; Bao XG; Zhang FS; Van Der Werf W
    Glob Chang Biol; 2015 Apr; 21(4):1715-26. PubMed ID: 25216023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographic and soil influences on root productivity of three bioenergy cropping systems.
    Ontl TA; Hofmockel KS; Cambardella CA; Schulte LA; Kolka RK
    New Phytol; 2013 Aug; 199(3):727-37. PubMed ID: 23692583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Threshold dynamics in soil carbon storage for bioenergy crops.
    Woo DK; Quijano JC; Kumar P; Chaoka S; Bernacchi CJ
    Environ Sci Technol; 2014 Oct; 48(20):12090-8. PubMed ID: 25207669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbon and nitrogen dynamics: the CENTURY model simulation.
    Qian YL; Bandaranayake W; Parton WJ; Mecham B; Harivandi MA; Mosier AR
    J Environ Qual; 2003; 32(5):1694-700. PubMed ID: 14535310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation.
    Sainju UM; Lenssen A; Caesar-Thonthat T; Waddell J
    J Environ Qual; 2006; 35(4):1341-7. PubMed ID: 16825454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Winter cover crops increase readily decomposable soil carbon, but compost drives total soil carbon during eight years of intensive, organic vegetable production in California.
    White KE; Brennan EB; Cavigelli MA; Smith RF
    PLoS One; 2020; 15(2):e0228677. PubMed ID: 32027701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.