BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25531905)

  • 1. Collagen structure and mechanical properties of the human sclera: analysis for the effects of age.
    Coudrillier B; Pijanka J; Jefferys J; Sorensen T; Quigley HA; Boote C; Nguyen TD
    J Biomech Eng; 2015 Apr; 137(4):041006. PubMed ID: 25531905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of age and diabetes on scleral stiffness.
    Coudrillier B; Pijanka J; Jefferys J; Sorensen T; Quigley HA; Boote C; Nguyen TD
    J Biomech Eng; 2015 Jul; 137(7):0710071-07100710. PubMed ID: 25751456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glaucoma-related Changes in the Mechanical Properties and Collagen Micro-architecture of the Human Sclera.
    Coudrillier B; Pijanka JK; Jefferys JL; Goel A; Quigley HA; Boote C; Nguyen TD
    PLoS One; 2015; 10(7):e0131396. PubMed ID: 26161963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical properties of the rat sclera obtained with inverse finite element modeling.
    Schwaner SA; Hannon BG; Feola AJ; Ethier CR
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2195-2212. PubMed ID: 32361821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scleral anisotropy and its effects on the mechanical response of the optic nerve head.
    Coudrillier B; Boote C; Quigley HA; Nguyen TD
    Biomech Model Mechanobiol; 2013 Oct; 12(5):941-63. PubMed ID: 23188256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen fiber interweaving is central to sclera stiffness.
    Wang B; Hua Y; Brazile BL; Yang B; Sigal IA
    Acta Biomater; 2020 Sep; 113():429-437. PubMed ID: 32585309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflation experiments and inverse finite element modelling of posterior human sclera.
    Geraghty B; Abass A; Eliasy A; Jones SW; Rama P; Kassem W; Akhtar R; Elsheikh A
    J Biomech; 2020 Jan; 98():109438. PubMed ID: 31679759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of Scleral Biomechanics and Collagen Fiber Alignment.
    Campbell IC; Sherwood JM; Overby DR; Hannon BG; Read AT; Raykin J; Ethier CR
    Methods Mol Biol; 2018; 1695():135-159. PubMed ID: 29190025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-dependent changes in collagen organization in the human peripapillary sclera.
    Pijanka JK; Spang MT; Sorensen T; Liu J; Nguyen TD; Quigley HA; Boote C
    PLoS One; 2015; 10(2):e0118648. PubMed ID: 25714753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material properties of the posterior human sclera.
    Grytz R; Fazio MA; Girard MJ; Libertiaux V; Bruno L; Gardiner S; Girkin CA; Downs JC
    J Mech Behav Biomed Mater; 2014 Jan; 29():602-17. PubMed ID: 23684352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D or not 2D? Mapping the in-depth inclination of the collagen fibers of the corneoscleral shell.
    Ji F; Quinn M; Hua Y; Lee PY; Sigal IA
    Exp Eye Res; 2023 Dec; 237():109701. PubMed ID: 37898229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripapillary and posterior scleral mechanics--part I: development of an anisotropic hyperelastic constitutive model.
    Girard MJ; Downs JC; Burgoyne CF; Suh JK
    J Biomech Eng; 2009 May; 131(5):051011. PubMed ID: 19388781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization.
    Girard MJ; Downs JC; Bottlang M; Burgoyne CF; Suh JK
    J Biomech Eng; 2009 May; 131(5):051012. PubMed ID: 19388782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications.
    Voorhees AP; Jan NJ; Hua Y; Yang B; Sigal IA
    Acta Biomater; 2018 Oct; 79():113-122. PubMed ID: 30142444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human sclerae.
    Pijanka JK; Coudrillier B; Ziegler K; Sorensen T; Meek KM; Nguyen TD; Quigley HA; Boote C
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5258-70. PubMed ID: 22786908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Subdomain Method for Mapping the Heterogeneous Mechanical Properties of the Human Posterior Sclera.
    Kollech HG; Ayyalasomayajula A; Behkam R; Tamimi E; Furdella K; Drewry M; Vande Geest JP
    Front Bioeng Biotechnol; 2019; 7():129. PubMed ID: 31214585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related variations in the biomechanical properties of human sclera.
    Geraghty B; Jones SW; Rama P; Akhtar R; Elsheikh A
    J Mech Behav Biomed Mater; 2012 Dec; 16():181-91. PubMed ID: 23182387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure-based numerical simulation of the mechanical behaviour of ocular tissue.
    Zhou D; Abass A; Eliasy A; Studer HP; Movchan A; Movchan N; Elsheikh A
    J R Soc Interface; 2019 May; 16(154):20180685. PubMed ID: 31039694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element modeling of the complex anisotropic mechanical behavior of the human sclera and pia mater.
    Karimi A; Rahmati SM; Razaghi R; Girkin CA; Crawford Downs J
    Comput Methods Programs Biomed; 2022 Mar; 215():106618. PubMed ID: 35026624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in posterior scleral collagen microstructure in canine eyes with an ADAMTS10 mutation.
    Boote C; Palko JR; Sorensen T; Mohammadvali A; Elsheikh A; Komáromy AM; Pan X; Liu J
    Mol Vis; 2016; 22():503-17. PubMed ID: 27212875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.