These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 25531951)

  • 1. Fusing inertial sensor data in an extended Kalman filter for 3D camera tracking.
    Erdem AT; Ercan AÖ
    IEEE Trans Image Process; 2015 Feb; 24(2):538-48. PubMed ID: 25531951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended Kalman filter-based methods for pose estimation using visual, inertial and magnetic sensors: comparative analysis and performance evaluation.
    Ligorio G; Sabatini AM
    Sensors (Basel); 2013 Feb; 13(2):1919-41. PubMed ID: 23385409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter.
    Alatise MB; Hancke GP
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28934102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.
    He C; Kazanzides P; Sen HT; Kim S; Liu Y
    Sensors (Basel); 2015 Jul; 15(7):16448-65. PubMed ID: 26184191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambulatory position and orientation tracking fusing magnetic and inertial sensing.
    Roetenberg D; Slycke PJ; Veltink PH
    IEEE Trans Biomed Eng; 2007 May; 54(5):883-90. PubMed ID: 17518285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed observers for pose estimation in the presence of inertial sensory soft faults.
    Sadeghzadeh-Nokhodberiz N; Poshtan J; Wagner A; Nordheimer E; Badreddin E
    ISA Trans; 2014 Jul; 53(4):1307-19. PubMed ID: 24852356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simulation Environment for Benchmarking Sensor Fusion-Based Pose Estimators.
    Ligorio G; Sabatini AM
    Sensors (Basel); 2015 Dec; 15(12):32031-44. PubMed ID: 26703603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 6-DOF Pose Estimation of a Robotic Navigation Aid by Tracking Visual and Geometric Features.
    Ye C; Hong S; Tamjidi A
    IEEE Trans Autom Sci Eng; 2015 Oct; 12(4):1169-1180. PubMed ID: 26924949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle's Motion Sensors.
    Karamat TB; Atia MM; Noureldin A
    Sensors (Basel); 2015 Sep; 15(9):24269-96. PubMed ID: 26402680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online camera-gyroscope autocalibration for cell phones.
    Jia C; Evans BL
    IEEE Trans Image Process; 2014 Dec; 23(12):5070-81. PubMed ID: 25265608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.
    Ligorio G; Sabatini AM
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2033-43. PubMed ID: 25775483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing.
    Sabatini AM
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1346-56. PubMed ID: 16830938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of IMU and MARG orientation using a gradient descent algorithm.
    Madgwick SO; Harrison AJ; Vaidyanathan A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975346. PubMed ID: 22275550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors.
    Duan Y; Zhang X; Li Z
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Customized Extended Kalman Filter for Removing the Impact of the Magnetometer's Measurements on Inclination Determination.
    Chen Y; Rong H
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Performance of Sensor Fusion Methods: Application to Magnetic-Inertial-Based Human Body Tracking.
    Ligorio G; Bergamini E; Pasciuto I; Vannozzi G; Cappozzo A; Sabatini AM
    Sensors (Basel); 2016 Jan; 16(2):153. PubMed ID: 26821027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots.
    Passon A; Schauer T; Seel T
    Front Robot AI; 2020; 7():554639. PubMed ID: 33501318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot Arm.
    El-Gohary M; McNames J
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1759-67. PubMed ID: 25700438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body sensor network-based strapdown orientation estimation: application to human locomotion.
    Misgeld BJ; Rüschen D; Kim S; Leonhardt S
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650480. PubMed ID: 24187297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.