These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 25532148)

  • 1. Analysis of human grasping behavior: correlating tasks, objects and grasps.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(4):430-41. PubMed ID: 25532148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of human grasping behavior: object characteristics and grasp type.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(3):311-23. PubMed ID: 25248214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grasp frequency and usage in daily household and machine shop tasks.
    Bullock IM; Zheng JZ; De La Rosa S; Guertler C; Dollar AM
    IEEE Trans Haptics; 2013; 6(3):296-308. PubMed ID: 24808326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planning grasps for object manipulation: integrating internal preferences and external constraints.
    Herbort O; Butz MV
    Cogn Process; 2015 Sep; 16 Suppl 1():249-53. PubMed ID: 26224266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-order grasp planning reflects sensitivity to inertial factors.
    Wagman JB; Abney DH; Rosenbaum DA
    Hum Mov Sci; 2018 Feb; 57():451-460. PubMed ID: 29074308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic grasp imitation following action observation affects estimation of intrinsic object properties.
    Gianelli C; Dalla Volta R; Barbieri F; Gentilucci M
    Brain Res; 2008 Jul; 1218():166-80. PubMed ID: 18514170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding the activity of grasping neurons recorded from the ventral premotor area F5 of the macaque monkey.
    Carpaneto J; Umiltà MA; Fogassi L; Murata A; Gallese V; Micera S; Raos V
    Neuroscience; 2011 Aug; 188():80-94. PubMed ID: 21575688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hand synergies during reach-to-grasp.
    Mason CR; Gomez JE; Ebner TJ
    J Neurophysiol; 2001 Dec; 86(6):2896-910. PubMed ID: 11731546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-driven grasp synthesis using shape matching and task-based pruning.
    Li Y; Fu JL; Pollard NS
    IEEE Trans Vis Comput Graph; 2007; 13(4):732-47. PubMed ID: 17495333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverting the planning gradient: adjustment of grasps to late segments of multi-step object manipulations.
    Mathew H; Kunde W; Herbort O
    Exp Brain Res; 2017 May; 235(5):1397-1409. PubMed ID: 28233050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp.
    Umilta MA; Brochier T; Spinks RL; Lemon RN
    J Neurophysiol; 2007 Jul; 98(1):488-501. PubMed ID: 17329624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humans Can Visually Judge Grasp Quality and Refine Their Judgments Through Visual and Haptic Feedback.
    Maiello G; Schepko M; Klein LK; Paulun VC; Fleming RW
    Front Neurosci; 2020; 14():591898. PubMed ID: 33510608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The observation of manual grasp actions affects the control of speech: a combined behavioral and Transcranial Magnetic Stimulation study.
    Gentilucci M; Campione GC; Dalla Volta R; Bernardis P
    Neuropsychologia; 2009 Dec; 47(14):3190-202. PubMed ID: 19654016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Robot Hand Compliance and Environmental Constraints for Edge Grasps.
    Bimbo J; Turco E; Ghazaei Ardakani M; Pozzi M; Salvietti G; Bo V; Malvezzi M; Prattichizzo D
    Front Robot AI; 2019; 6():135. PubMed ID: 33501150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the choice of grasp type and location when handing over an object.
    Cini F; Ortenzi V; Corke P; Controzzi M
    Sci Robot; 2019 Feb; 4(27):. PubMed ID: 33137738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left visual field preference for a bimanual grasping task with ecologically valid object sizes.
    Le A; Niemeier M
    Exp Brain Res; 2013 Oct; 230(2):187-96. PubMed ID: 23857170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Neural Components of Visually Guided Grasping during Planning and Execution.
    Klein LK; Maiello G; Stubbs K; Proklova D; Chen J; Paulun VC; Culham JC; Fleming RW
    J Neurosci; 2023 Dec; 43(49):8504-8514. PubMed ID: 37848285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Too much anticipation? Large anticipatory adjustments of grasping movements to minimal object manipulations.
    Herbort O
    Hum Mov Sci; 2015 Aug; 42():100-16. PubMed ID: 26004123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual differences in motor planning during a multi-segment object manipulation task.
    Seegelke C; Hughes CM; Schütz C; Schack T
    Exp Brain Res; 2012 Oct; 222(1-2):125-36. PubMed ID: 22885998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.