These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25532148)

  • 21. The potentiation of two components of the reach-to-grasp action during object categorisation in visual memory.
    Derbyshire N; Ellis R; Tucker M
    Acta Psychol (Amst); 2006 May; 122(1):74-98. PubMed ID: 16376844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of grasps by robot hands.
    Zhang Y; Gruver WA; Li J; Zhang Q
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(3):436-44. PubMed ID: 18244809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infants' visual anticipation of object structure in grasp planning.
    Barrett TM; Traupman E; Needham A
    Infant Behav Dev; 2008 Jan; 31(1):1-9. PubMed ID: 17624439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An introductory study of common grasps used by adults during performance of activities of daily living.
    Vergara M; Sancho-Bru JL; Gracia-Ibáñez V; Pérez-González A
    J Hand Ther; 2014; 27(3):225-33; quiz 234. PubMed ID: 24878351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The spatial relations between stimulus and response determine an absolute visuo-haptic calibration in pantomime-grasping.
    Davarpanah Jazi S; Heath M
    Brain Cogn; 2017 Jun; 114():29-39. PubMed ID: 28346879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Task-dependent selection of grasp kinematics and stiffness in human object manipulation.
    Friedman J; Flash T
    Cortex; 2007 Apr; 43(3):444-60. PubMed ID: 17533767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precision grasps of children and young and old adults: individual differences in digit contact strategy, purchase pattern, and digit posture.
    Wong YJ; Whishaw IQ
    Behav Brain Res; 2004 Sep; 154(1):113-23. PubMed ID: 15302117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patterns of muscle activity underlying object-specific grasp by the macaque monkey.
    Brochier T; Spinks RL; Umilta MA; Lemon RN
    J Neurophysiol; 2004 Sep; 92(3):1770-82. PubMed ID: 15163676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prehension movements in the macaque monkey: effects of object size and location.
    Roy AC; Paulignan Y; Meunier M; Boussaoud D
    J Neurophysiol; 2002 Sep; 88(3):1491-9. PubMed ID: 12205169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting precision grip grasp locations on three-dimensional objects.
    Klein LK; Maiello G; Paulun VC; Fleming RW
    PLoS Comput Biol; 2020 Aug; 16(8):e1008081. PubMed ID: 32750070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precision and power grip priming by observed grasping.
    Vainio L; Tucker M; Ellis R
    Brain Cogn; 2007 Nov; 65(2):195-207. PubMed ID: 17766020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The neural underpinnings of haptically guided functional grasping of tools: An fMRI study.
    Styrkowiec PP; Nowik AM; Króliczak G
    Neuroimage; 2019 Jul; 194():149-162. PubMed ID: 30910723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Instrumented objects for quantitative evaluation of hand grasp.
    Memberg WD; Crago PE
    J Rehabil Res Dev; 1997 Jan; 34(1):82-90. PubMed ID: 9021628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The right anterior intraparietal sulcus is critical for bimanual grasping: a TMS study.
    Le A; Vesia M; Yan X; Niemeier M; Crawford JD
    Cereb Cortex; 2014 Oct; 24(10):2591-603. PubMed ID: 23645719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Grasping tools: effects of task and apraxia.
    Randerath J; Li Y; Goldenberg G; Hermsdörfer J
    Neuropsychologia; 2009 Jan; 47(2):497-505. PubMed ID: 18977235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manual asymmetries in visually primed grasping.
    Vainio L; Ellis R; Tucker M; Symes E
    Exp Brain Res; 2006 Aug; 173(3):395-406. PubMed ID: 16489431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Taxonomy based analysis of force exchanges during object grasping and manipulation.
    Martin-Brevet S; Jarrassé N; Burdet E; Roby-Brami A
    PLoS One; 2017; 12(5):e0178185. PubMed ID: 28562617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of reducing intermediate target constraints on grasp posture planning during a three-segment object manipulation task.
    Seegelke C; Hughes CM; Knoblauch A; Schack T
    Exp Brain Res; 2015 Feb; 233(2):529-38. PubMed ID: 25370347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of grasping forces during object transport.
    Smith MA; Soechting JF
    J Neurophysiol; 2005 Jan; 93(1):137-45. PubMed ID: 15342721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using kinematic reduction for studying grasping postures. An application to power and precision grasp of cylinders.
    Jarque-Bou N; Gracia-Ibáñez V; Sancho-Bru JL; Vergara M; Pérez-González A; Andrés FJ
    Appl Ergon; 2016 Sep; 56():52-61. PubMed ID: 27184310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.