These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25532159)

  • 1. Identification of the dynamic operating envelope of HCCI engines using class imbalance learning.
    Janakiraman VM; Nguyen X; Sterniak J; Assanis D
    IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):98-112. PubMed ID: 25532159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.
    Vaughan A; Bohac SV
    Neural Netw; 2015 Oct; 70():18-26. PubMed ID: 26164437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emissions from homogeneous charge compression ignition (HCCI) engine using different fuels: a review.
    Verma SK; Gaur S; Akram T; Gautam S; Kumar A
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):50960-50969. PubMed ID: 34342822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Support vector machine based emissions modeling using particle swarm optimization for homogeneous charge compression ignition engine.
    Gordon D; Norouzi A; Blomeyer G; Bedei J; Aliramezani M; Andert J; Koch CR
    Int J Engine Res; 2023 Feb; 24(2):536-551. PubMed ID: 36776419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines.
    Buruiana DL; Sachelarie A; Butnaru C; Ghisman V
    Int J Environ Res Public Health; 2021 Aug; 18(17):. PubMed ID: 34501664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combustion control of DME HCCI using charge dilution and spark assistance.
    Yu X; LeBlanc S; Sandhu N; Tjong J; Zheng M
    Proc Inst Mech Eng D J Automob Eng; 2023 Jul; 237(8):1959-1974. PubMed ID: 37435439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. System based on thermal control of the HCCI technology developed for reduction of the vehicle NO
    Puškár M; Kopas M
    Sci Total Environ; 2018 Dec; 643():674-680. PubMed ID: 29957432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of optimum operating parameters of MWCNT-doped ethanol fueled HCCI engine for emission reduction.
    Kocakulak T; Arslan TA; Şahin F; Solmaz H; Ardebili SMS; Calam A
    Sci Total Environ; 2023 Oct; 895():165196. PubMed ID: 37391142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.
    Ganesh D; Nagarajan G; Ganesan S
    Environ Sci Technol; 2014; 48(5):3039-46. PubMed ID: 24383396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.
    Yang LP; Ding SL; Litak G; Song EZ; Ma XZ
    Chaos; 2015 Jan; 25(1):013105. PubMed ID: 25637916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis.
    Daw CS; Finney CE; Kaul BC; Edwards KD; Wagner RM
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2034):. PubMed ID: 25548262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive critic learning techniques for engine torque and air-fuel ratio control.
    Liu D; Javaherian H; Kovalenko O; Huang T
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):988-93. PubMed ID: 18632389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced Reaction Mechanisms for Ethanol under Ultra-lean Conditions in Internal Combustion Engines.
    Marques CST; da Silva JRM
    ACS Omega; 2021 Jan; 6(1):206-216. PubMed ID: 33458473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal-robust selection of a fuel surrogate for homogeneous charge compression ignition modeling.
    García-Camacha Gutiérrez I; Martín Martín R; Sanz Argent J
    PLoS One; 2020; 15(6):e0234963. PubMed ID: 32584832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural network controller development and implementation for spark ignition engines with high EGR levels.
    Vance JB; Singh A; Kaul BC; Jagannathan S; Drallmeier JA
    IEEE Trans Neural Netw; 2007 Jul; 18(4):1083-100. PubMed ID: 17668663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automotive fuels and internal combustion engines: a chemical perspective.
    Wallington TJ; Kaiser EW; Farrell JT
    Chem Soc Rev; 2006 Apr; 35(4):335-47. PubMed ID: 16565750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Kinetic Model of Multicomponent Gasoline Surrogate Fuel with Nitric Oxide in HCCI Combustion.
    Yang C; Zheng Z
    Molecules; 2020 May; 25(10):. PubMed ID: 32408581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simulation Study of Water Injection Position and Pressure on the Knock, Combustion, and Emissions of a Direct Injection Gasoline Engine.
    Li A; Zheng Z; Song Y
    ACS Omega; 2021 Jul; 6(28):18033-18053. PubMed ID: 34308038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Class-specific extreme learning machine for handling binary class imbalance problem.
    Raghuwanshi BS; Shukla S
    Neural Netw; 2018 Sep; 105():206-217. PubMed ID: 29870928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Misfire Detection in Spark Ignition Engine Using Transfer Learning.
    Naveen Venkatesh S; Chakrapani G; Senapti SB; Annamalai K; Elangovan M; Indira V; Sugumaran V; Mahamuni VS
    Comput Intell Neurosci; 2022; 2022():7606896. PubMed ID: 35845904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.