These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25532187)

  • 1. Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements.
    Li Z; Milutinovic D; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1020-30. PubMed ID: 25532187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rotational axis approach for resolving the kinematic redundancy of the human arm in reaching movements.
    Li Z; Roldan JR; Milutinović D; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2507-10. PubMed ID: 24110236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The leading joint hypothesis for spatial reaching arm motions.
    Ambike S; Schmiedeler JP
    Exp Brain Res; 2013 Feb; 224(4):591-603. PubMed ID: 23229774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensatory strategies for reaching in stroke.
    Cirstea MC; Levin MF
    Brain; 2000 May; 123 ( Pt 5)():940-53. PubMed ID: 10775539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced Kinematic Redundancy and Motor Equivalence During Whole-Body Reaching in Individuals With Chronic Stroke.
    Tomita Y; Mullick AA; Levin MF
    Neurorehabil Neural Repair; 2018 Feb; 32(2):175-186. PubMed ID: 29554848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redundancy resolution of the human arm and an upper limb exoskeleton.
    Kim H; Miller LM; Byl N; Abrams GM; Rosen J
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1770-9. PubMed ID: 22510944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From reaching to reach-to-grasp: the arm posture difference and its implications on human motion control strategy.
    Li Z; Milutinović D; Rosen J
    Exp Brain Res; 2017 May; 235(5):1627-1642. PubMed ID: 28265688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects.
    Knaut LA; Subramanian SK; McFadyen BJ; Bourbonnais D; Levin MF
    Arch Phys Med Rehabil; 2009 May; 90(5):793-802. PubMed ID: 19406299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay of biomechanical constraints and kinematic strategies in selecting arm postures.
    States RA; Wright CE
    J Mot Behav; 2001 Jun; 33(2):165-79. PubMed ID: 11404212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy of arm movement control is determined by minimization of neural effort for joint coordination.
    Dounskaia N; Shimansky Y
    Exp Brain Res; 2016 Jun; 234(6):1335-50. PubMed ID: 26983620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke.
    Culmer PR; Jackson AE; Makower SG; Cozens JA; Levesley MC; Mon-Williams M; Bhakta B
    J Neurosci Methods; 2011 Apr; 197(2):259-69. PubMed ID: 21414360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is there an optimal arm posture? Deterioration of finger localization precision and comfort sensation in extreme arm-joint postures.
    Rossetti Y; Meckler C; Prablanc C
    Exp Brain Res; 1994; 99(1):131-6. PubMed ID: 7925786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematics of reaching movements in a 2-D virtual environment in adults with and without stroke.
    Liebermann DG; Berman S; Weiss PL; Levin MF
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):778-87. PubMed ID: 22907972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements.
    Berret B; Darlot C; Jean F; Pozzo T; Papaxanthis C; Gauthier JP
    PLoS Comput Biol; 2008 Oct; 4(10):e1000194. PubMed ID: 18949023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of bilateral reaching on affected arm motor control in stroke--with and without loading on unaffected arm.
    Chang JJ; Tung WL; Wu WL; Su FC
    Disabil Rehabil; 2006 Dec; 28(24):1507-16. PubMed ID: 17178614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm postures and movements.
    Wang X
    Biol Cybern; 1999 Jun; 80(6):449-63. PubMed ID: 10420570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The coordination between trunk and arm motion during pointing movements.
    Kaminski TR; Bock C; Gentile AM
    Exp Brain Res; 1995; 106(3):457-66. PubMed ID: 8983989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two functionally different synergies during arm reaching movements involving the trunk.
    Ma S; Feldman AG
    J Neurophysiol; 1995 May; 73(5):2120-2. PubMed ID: 7623104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.