These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 25532191)
1. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals. Quan H; Srinivasan D; Khosravi A IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2123-35. PubMed ID: 25532191 [TBL] [Abstract][Full Text] [Related]
2. Short-term load and wind power forecasting using neural network-based prediction intervals. Quan H; Srinivasan D; Khosravi A IEEE Trans Neural Netw Learn Syst; 2014 Feb; 25(2):303-15. PubMed ID: 24807030 [TBL] [Abstract][Full Text] [Related]
3. A Survey of Computational Intelligence Techniques for Wind Power Uncertainty Quantification in Smart Grids. Quan H; Khosravi A; Yang D; Srinivasan D IEEE Trans Neural Netw Learn Syst; 2020 Nov; 31(11):4582-4599. PubMed ID: 31870999 [TBL] [Abstract][Full Text] [Related]
4. An artificial gorilla troops optimizer for stochastic unit commitment problem solution incorporating solar, wind, and load uncertainties. Rihan M; Sayed A; Abdel-Rahman AB; Ebeed M; Alghamdi TAH; Salama HS PLoS One; 2024; 19(7):e0305329. PubMed ID: 38985844 [TBL] [Abstract][Full Text] [Related]
5. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty. Zhang H; Lei X; Wang C; Yue D; Xie X PLoS One; 2017; 12(9):e0185454. PubMed ID: 28961262 [TBL] [Abstract][Full Text] [Related]
6. System-wide emissions implications of increased wind power penetration. Valentino L; Valenzuela V; Botterud A; Zhou Z; Conzelmann G Environ Sci Technol; 2012 Apr; 46(7):4200-6. PubMed ID: 22390673 [TBL] [Abstract][Full Text] [Related]
7. An Interval-Valued Neural Network Approach for Uncertainty Quantification in Short-Term Wind Speed Prediction. Ak R; Vitelli V; Zio E IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2787-800. PubMed ID: 25730829 [TBL] [Abstract][Full Text] [Related]
8. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm. Poultangari I; Shahnazi R; Sheikhan M ISA Trans; 2012 Sep; 51(5):641-8. PubMed ID: 22738782 [TBL] [Abstract][Full Text] [Related]
9. A two-stage SCUC model for distribution networks considering uncertainty and demand response. Wang F; Gan L; Zhang P Heliyon; 2023 Oct; 9(10):e20189. PubMed ID: 37810800 [TBL] [Abstract][Full Text] [Related]
10. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction. Ak R; Fink O; Zio E IEEE Trans Neural Netw Learn Syst; 2016 Aug; 27(8):1734-47. PubMed ID: 25910257 [TBL] [Abstract][Full Text] [Related]
11. A Low-Carbon and Economic Dispatch Strategy for a Multi-Microgrid Based on a Meteorological Classification to Handle the Uncertainty of Wind Power. Liu Y; Li X; Liu Y Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300077 [TBL] [Abstract][Full Text] [Related]
12. A new multi-objective-stochastic framework for reconfiguration and wind energy resource allocation in distribution network incorporating improved dandelion optimizer and uncertainty. Duan F; Basem A; Jasim DJ; Belhaj S; Eslami M; Khajehzadeh M; Palani S Sci Rep; 2024 Sep; 14(1):20857. PubMed ID: 39242801 [TBL] [Abstract][Full Text] [Related]
13. An improved wavelet transform and multi-block forecast engine based on a novel training mechanism. Cui J; Li Q; Li X; Xu Z; Lu Z; Zhang B; Berti S ISA Trans; 2019 Jan; 84():142-153. PubMed ID: 30316574 [TBL] [Abstract][Full Text] [Related]
14. A data-driven model for power system operating costs based on different types of wind power fluctuations. Yan J; Liu S; Yan Y; Zhang H; Liang C; Wang B; Liu Y; Han S J Environ Manage; 2024 Feb; 351():119878. PubMed ID: 38159305 [TBL] [Abstract][Full Text] [Related]
15. A Multi-Stage Planning Method for Distribution Networks Based on ARIMA with Error Gradient Sampling for Source-Load Prediction. Yan S; Hu M Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366098 [TBL] [Abstract][Full Text] [Related]
16. Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty. Wen Y; AlHakeem D; Mandal P; Chakraborty S; Wu YK; Senjyu T; Paudyal S; Tseng TL IEEE Trans Neural Netw Learn Syst; 2020 Apr; 31(4):1134-1144. PubMed ID: 31247566 [TBL] [Abstract][Full Text] [Related]
17. An integrated binary metaheuristic approach in dynamic unit commitment and economic emission dispatch for hybrid energy systems. Syama S; Ramprabhakar J; Anand R; Guerrero JM Sci Rep; 2024 Oct; 14(1):23964. PubMed ID: 39397068 [TBL] [Abstract][Full Text] [Related]
18. A hybrid prediction model for forecasting wind energy resources. Zhang Y; Pan G Environ Sci Pollut Res Int; 2020 Jun; 27(16):19428-19446. PubMed ID: 32215801 [TBL] [Abstract][Full Text] [Related]
19. An effective strategy for unit commitment of microgrid power systems integrated with renewable energy sources including effects of battery degradation and uncertainties. Manoharan P; Chandrasekaran K; Chandran R; Ravichandran S; Mohammad S; Jangir P Environ Sci Pollut Res Int; 2024 Feb; 31(7):11037-11080. PubMed ID: 38217814 [TBL] [Abstract][Full Text] [Related]
20. Dual adaptive dynamic control of mobile robots using neural networks. Bugeja MK; Fabri SG; Camilleri L IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]