These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 25532191)
21. Hybrid Reinforcement Learning for Power Transmission Network Self-Healing Considering Wind Power. Sun R; Liu Y IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):6405-6415. PubMed ID: 34968180 [TBL] [Abstract][Full Text] [Related]
22. Improved gray wolf optimization algorithm for solving placement and sizing of electrical energy storage system in micro-grids. Miao D; Hossain S ISA Trans; 2020 Jul; 102():376-387. PubMed ID: 32081401 [TBL] [Abstract][Full Text] [Related]
23. Distributed robust optimization for low-carbon dispatch of wind-thermal power under uncertainties. Jin J; Wen Q; Qiu Y; Cheng S; Guo X Environ Sci Pollut Res Int; 2023 Feb; 30(8):20980-20994. PubMed ID: 36264472 [TBL] [Abstract][Full Text] [Related]
24. Performance optimization of linear active disturbance rejection control approach by modified bat inspired algorithm for single area load frequency control concerning high wind power penetration. Ali S; Yang G; Huang C ISA Trans; 2018 Oct; 81():163-176. PubMed ID: 30072035 [TBL] [Abstract][Full Text] [Related]
25. Renewable energy sources integration via machine learning modelling: A systematic literature review. Alazemi T; Darwish M; Radi M Heliyon; 2024 Feb; 10(4):e26088. PubMed ID: 38404865 [TBL] [Abstract][Full Text] [Related]
26. Simulation-based uncertainty quantification of human arterial network hemodynamics. Chen P; Quarteroni A; Rozza G Int J Numer Method Biomed Eng; 2013 Jun; 29(6):698-721. PubMed ID: 23653286 [TBL] [Abstract][Full Text] [Related]
27. Comprehensive review of neural network-based prediction intervals and new advances. Khosravi A; Nahavandi S; Creighton D; Atiya AF IEEE Trans Neural Netw; 2011 Sep; 22(9):1341-56. PubMed ID: 21803683 [TBL] [Abstract][Full Text] [Related]
28. Stochastic multi-objective model for optimal energy exchange optimization of networked microgrids with presence of renewable generation under risk-based strategies. Gazijahani FS; Ravadanegh SN; Salehi J ISA Trans; 2018 Feb; 73():100-111. PubMed ID: 29246688 [TBL] [Abstract][Full Text] [Related]
29. Using firefly algorithm to optimally size a hybrid renewable energy system constrained by battery degradation and considering uncertainties of power sources and loads. Yuan T; Mu Y; Wang T; Liu Z; Pirouzi A Heliyon; 2024 Apr; 10(7):e26961. PubMed ID: 38590876 [TBL] [Abstract][Full Text] [Related]
30. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid. Yang Q; An D; Yu W; Tan Z; Yang X Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322281 [TBL] [Abstract][Full Text] [Related]
31. Optimization scheme of wind energy prediction based on artificial intelligence. Zhang Y; Li R; Zhang J Environ Sci Pollut Res Int; 2021 Aug; 28(29):39966-39981. PubMed ID: 33763837 [TBL] [Abstract][Full Text] [Related]
32. Hybrid attention-based temporal convolutional bidirectional LSTM approach for wind speed interval prediction. Bommidi BS; Kosana V; Teeparthi K; Madasthu S Environ Sci Pollut Res Int; 2023 Mar; 30(14):40018-40030. PubMed ID: 36602735 [TBL] [Abstract][Full Text] [Related]
33. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller. Ko HS; Lee KY; Kang MJ; Kim HC Neural Netw; 2008 Dec; 21(10):1439-46. PubMed ID: 18996680 [TBL] [Abstract][Full Text] [Related]
34. Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction. Wang R; Li C; Fu W; Tang G IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):3814-3827. PubMed ID: 31725392 [TBL] [Abstract][Full Text] [Related]
35. The impacts of electricity dispatch protocols on the emission reductions due to wind power and carbon tax. Yu Y; Rajagopal R Environ Sci Technol; 2015 Feb; 49(4):2568-76. PubMed ID: 25607824 [TBL] [Abstract][Full Text] [Related]
36. Greenhouse gas emissions from operating reserves used to backup large-scale wind power. Fripp M Environ Sci Technol; 2011 Nov; 45(21):9405-12. PubMed ID: 21797198 [TBL] [Abstract][Full Text] [Related]
37. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos. New L; Bjerre E; Millsap B; Otto MC; Runge MC PLoS One; 2015; 10(7):e0130978. PubMed ID: 26134412 [TBL] [Abstract][Full Text] [Related]
38. A combination predicting methodology based on T-LSTNet_Markov for short-term wind power prediction. Wang Y; Wu Y; Xu H; Chen Z; Gao J; Xu Z; Li L Network; 2023; 34(3):151-173. PubMed ID: 37246622 [TBL] [Abstract][Full Text] [Related]
39. Hierarchical deep reinforcement learning for self-adaptive economic dispatch. Li M; Yang D; Xu Y; Ji T Heliyon; 2024 Jul; 10(14):e33944. PubMed ID: 39114005 [TBL] [Abstract][Full Text] [Related]
40. A three-stage birandom program for unit commitment with wind power uncertainty. Zhang N; Li W; Liu R; Lv Q; Sun L ScientificWorldJournal; 2014; 2014():583157. PubMed ID: 24987739 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]