These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 25532195)
1. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression. Zhang Q; Hu X; Zhang B IEEE Trans Neural Netw Learn Syst; 2015 Aug; 26(8):1828-33. PubMed ID: 25532195 [TBL] [Abstract][Full Text] [Related]
2. A fast identification algorithm for Box-Cox transformation based radial basis function neural network. Hong X IEEE Trans Neural Netw; 2006 Jul; 17(4):1064-9. PubMed ID: 16856667 [TBL] [Abstract][Full Text] [Related]
3. Online monitoring and control of particle size in the grinding process using least square support vector regression and resilient back propagation neural network. Pani AK; Mohanta HK ISA Trans; 2015 May; 56():206-21. PubMed ID: 25528293 [TBL] [Abstract][Full Text] [Related]
5. New model for prediction binary mixture of antihistamine decongestant using artificial neural networks and least squares support vector machine by spectrophotometry method. Mofavvaz S; Sohrabi MR; Nezamzadeh-Ejhieh A Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jul; 182():105-115. PubMed ID: 28412664 [TBL] [Abstract][Full Text] [Related]
6. Nondegenerate piecewise linear systems: a finite Newton algorithm and applications in machine learning. Yuan XT; Yan S Neural Comput; 2012 Apr; 24(4):1047-84. PubMed ID: 22091666 [TBL] [Abstract][Full Text] [Related]
7. Machine learning approach to color constancy. Agarwal V; Gribok AV; Abidi MA Neural Netw; 2007 Jul; 20(5):559-63. PubMed ID: 17624727 [TBL] [Abstract][Full Text] [Related]
8. Incremental learning for ν-Support Vector Regression. Gu B; Sheng VS; Wang Z; Ho D; Osman S; Li S Neural Netw; 2015 Jul; 67():140-50. PubMed ID: 25933108 [TBL] [Abstract][Full Text] [Related]
9. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage. Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455 [TBL] [Abstract][Full Text] [Related]
10. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions. Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854 [TBL] [Abstract][Full Text] [Related]
11. Efficient learning and feature selection in high-dimensional regression. Ting JA; D'Souza A; Vijayakumar S; Schaal S Neural Comput; 2010 Apr; 22(4):831-86. PubMed ID: 20028222 [TBL] [Abstract][Full Text] [Related]
12. Embedding prior knowledge within compressed sensing by neural networks. Merhej D; Diab C; Khalil M; Prost R IEEE Trans Neural Netw; 2011 Oct; 22(10):1638-49. PubMed ID: 21900075 [TBL] [Abstract][Full Text] [Related]
13. Predicting Blast-Induced Ground Vibration in Open-Pit Mines Using Vibration Sensors and Support Vector Regression-Based Optimization Algorithms. Nguyen H; Choi Y; Bui XN; Nguyen-Thoi T Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878226 [TBL] [Abstract][Full Text] [Related]
14. An efficient learning algorithm for improving generalization performance of radial basis function neural networks. Wang ZO; Zhu T Neural Netw; 2000; 13(4-5):545-53. PubMed ID: 10946399 [TBL] [Abstract][Full Text] [Related]
15. A new RBF neural network with boundary value constraints. Hong X; Chen S IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):298-303. PubMed ID: 19068436 [TBL] [Abstract][Full Text] [Related]
16. Linear regression models for solvent accessibility prediction in proteins. Wagner M; Adamczak R; Porollo A; Meller J J Comput Biol; 2005 Apr; 12(3):355-69. PubMed ID: 15857247 [TBL] [Abstract][Full Text] [Related]
17. Maximum likelihood optimal and robust Support Vector Regression with lncosh loss function. Karal O Neural Netw; 2017 Oct; 94():1-12. PubMed ID: 28732230 [TBL] [Abstract][Full Text] [Related]
18. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Balabin RM; Lomakina EI Analyst; 2011 Apr; 136(8):1703-12. PubMed ID: 21350755 [TBL] [Abstract][Full Text] [Related]