BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25532282)

  • 21. Two proteins with ribosome-inactivating, cytotoxic and abortifacient activities from seeds of Luffa cylindrica roem (Cucurbitaceae).
    Ng TB; Wong RN; Yeung HW
    Biochem Int; 1992 Jul; 27(2):197-207. PubMed ID: 1503559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new flavone glycoside from the fruits of Luffa cylindrica.
    Du Q; Cui H
    Fitoterapia; 2007 Dec; 78(7-8):609-10. PubMed ID: 17689887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.
    Ferracane R; Graziani G; Gallo M; Fogliano V; Ritieni A
    J Pharm Biomed Anal; 2010 Jan; 51(2):399-404. PubMed ID: 19375261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy.
    McCarty MF; Assanga SI; Lujan LL
    Med Hypotheses; 2020 Aug; 141():109723. PubMed ID: 32305811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption chromatography separation of the flavonols kaempferol, quercetin and myricetin using cross-linked collagen fibre as the stationary phase.
    Ding P; Liao X; Shi B
    J Sci Food Agric; 2013 May; 93(7):1575-83. PubMed ID: 23152137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and antioxidant activity of brominated flavonols and flavanones.
    Justino GC; Rodrigues M; Florêncio MH; Mira L
    J Mass Spectrom; 2009 Oct; 44(10):1459-68. PubMed ID: 19708016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of flavonols and derivatives as human cathepsin B inhibitor.
    Ramalho SD; de Sousa LR; Burger MC; Lima MI; da Silva MF; Fernandes JB; Vieira PC
    Nat Prod Res; 2015; 29(23):2212-4. PubMed ID: 25622620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gas-phase ligation of Fe+ and Cu+ ions with some flavonoids.
    Kazazić SP; Butković V; Srzić D; Klasinc L
    J Agric Food Chem; 2006 Nov; 54(22):8391-6. PubMed ID: 17061811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Absorption and emission of the apigenin and luteolin flavonoids: a TDDFT investigation.
    Amat A; Clementi C; De Angelis F; Sgamellotti A; Fantacci S
    J Phys Chem A; 2009 Dec; 113(52):15118-26. PubMed ID: 19722543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of quercetin and luteolin by Eubacterium ramulus.
    Braune A; Gütschow M; Engst W; Blaut M
    Appl Environ Microbiol; 2001 Dec; 67(12):5558-67. PubMed ID: 11722907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of hepatic clearance and drug-drug interactions of luteolin and apigenin by using primary cultured rat hepatocytes.
    Lu X; Sun D; Chen Z; Ye J; Wang R; Li L; Zeng S; Jiang H
    Pharmazie; 2011 Aug; 66(8):600-5. PubMed ID: 21901983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A profile of bioactive compounds of Rumex vesicarius L.
    El-Hawary SA; Sokkar NM; Ali ZY; Yehia MM
    J Food Sci; 2011 Oct; 76(8):C1195-202. PubMed ID: 22417584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flavonoids from Argentine Tagetes (Asteraceae) with antimicrobial activity.
    Tereschuk ML; Baigorí MD; De Figueroa LI; Abdala LR
    Methods Mol Biol; 2004; 268():317-30. PubMed ID: 15156042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds.
    Chagas MDSS; Behrens MD; Moragas-Tellis CJ; Penedo GXM; Silva AR; Gonçalves-de-Albuquerque CF
    Oxid Med Cell Longev; 2022; 2022():9966750. PubMed ID: 36111166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical constituents from the seeds of Trifolium alexandrinum.
    Sharaf M
    Nat Prod Res; 2008 Dec; 22(18):1620-3. PubMed ID: 19085418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of flavonoids in black rice by liquid chromatography-negative electrospray ionization tandem mass spectrometry.
    Sriseadka T; Wongpornchai S; Rayanakorn M
    J Agric Food Chem; 2012 Nov; 60(47):11723-32. PubMed ID: 23121250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines.
    Wang W; VanAlstyne PC; Irons KA; Chen S; Stewart JW; Birt DF
    Nutr Cancer; 2004; 48(1):106-14. PubMed ID: 15203384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits.
    Ogo Y; Ozawa K; Ishimaru T; Murayama T; Takaiwa F
    Plant Biotechnol J; 2013 Aug; 11(6):734-46. PubMed ID: 23551455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flavonoid Metabolites in Serum and Urine after the Ingestion of Selected Tropical Fruits.
    Chomphen L; Yamanont P; Morales NP
    Nutrients; 2024 Jan; 16(1):. PubMed ID: 38201990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of IGF-I production and proliferation of human leiomyomal smooth muscle cells by Scutellaria barbata D. Don in vitro: isolation of flavonoids of apigenin and luteolin as acting compounds.
    Kim DI; Lee TK; Lim IS; Kim H; Lee YC; Kim CH
    Toxicol Appl Pharmacol; 2005 Jun; 205(3):213-24. PubMed ID: 15922007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.