These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25532526)

  • 1. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.
    Ryu H; Oh S; Lee HJ; Lee JY; Lee HK; Jeon NL
    J Lab Autom; 2015 Jun; 20(3):296-301. PubMed ID: 25532526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device.
    Nashimoto Y; Hayashi T; Kunita I; Nakamasu A; Torisawa YS; Nakayama M; Takigawa-Imamura H; Kotera H; Nishiyama K; Miura T; Yokokawa R
    Integr Biol (Camb); 2017 Jun; 9(6):506-518. PubMed ID: 28561127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfabricated blood vessels undergo neoangiogenesis.
    DiVito KA; Daniele MA; Roberts SA; Ligler FS; Adams AA
    Biomaterials; 2017 Sep; 138():142-152. PubMed ID: 28570946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of perfusable microvascular network morphology using a multiculture microfluidic system.
    Whisler JA; Chen MB; Kamm RD
    Tissue Eng Part C Methods; 2014 Jul; 20(7):543-52. PubMed ID: 24151838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering blood vessels from stem cells: recent advances and applications.
    Levenberg S
    Curr Opin Biotechnol; 2005 Oct; 16(5):516-23. PubMed ID: 16144762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and modulation of fibroblast/endothelial cell co-cultures for the in vitro preformation of three-dimensional tubular networks.
    Eckermann CW; Lehle K; Schmid SA; Wheatley DN; Kunz-Schughart LA
    Cell Biol Int; 2011 Nov; 35(11):1097-110. PubMed ID: 21418038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfusable Vascular Network with a Tissue Model in a Microfluidic Device.
    Nashimoto Y; Teraoka Y; Banan Sadeghian R; Nakamasu A; Arima Y; Hanada S; Kotera H; Nishiyama K; Miura T; Yokokawa R
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of vascular sprouting from fabricated perfusable vascular-like structures.
    Osaki T; Kakegawa T; Kageyama T; Enomoto J; Nittami T; Fukuda J
    PLoS One; 2015; 10(4):e0123735. PubMed ID: 25860890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells.
    Sieminski AL; Hebbel RP; Gooch KJ
    Tissue Eng; 2005; 11(9-10):1332-45. PubMed ID: 16259589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro.
    Kunz-Schughart LA; Schroeder JA; Wondrak M; van Rey F; Lehle K; Hofstaedter F; Wheatley DN
    Am J Physiol Cell Physiol; 2006 May; 290(5):C1385-98. PubMed ID: 16601149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic vascular-bed devices for vascularized 3D tissue engineering: tissue engineering on a chip.
    Takehara H; Sakaguchi K; Sekine H; Okano T; Shimizu T
    Biomed Microdevices; 2019 Dec; 22(1):9. PubMed ID: 31863202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.
    Chen Y; Chan HN; Michael SA; Shen Y; Chen Y; Tian Q; Huang L; Wu H
    Lab Chip; 2017 Feb; 17(4):653-662. PubMed ID: 28112765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels.
    Sekine H; Shimizu T; Sakaguchi K; Dobashi I; Wada M; Yamato M; Kobayashi E; Umezu M; Okano T
    Nat Commun; 2013; 4():1399. PubMed ID: 23360990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molded hyaluronic acid gel as a micro-template for blood capillaries.
    Sugibayashi K; Kumashiro Y; Shimizu T; Kobayashi J; Okano T
    J Biomater Sci Polym Ed; 2013; 24(2):135-47. PubMed ID: 23565594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering.
    Wenger A; Kowalewski N; Stahl A; Mehlhorn AT; Schmal H; Stark GB; Finkenzeller G
    Cells Tissues Organs; 2005; 181(2):80-8. PubMed ID: 16534202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emulating human microcapillaries in a multi-organ-chip platform.
    Hasenberg T; Mühleder S; Dotzler A; Bauer S; Labuda K; Holnthoner W; Redl H; Lauster R; Marx U
    J Biotechnol; 2015 Dec; 216():1-10. PubMed ID: 26435219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect.
    Li H; Chang J
    Acta Biomater; 2013 Jun; 9(6):6981-91. PubMed ID: 23416471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers.
    Wong HK; Ivan Lam CR; Wen F; Mark Chong SK; Tan NS; Jerry C; Pal M; Tan LP
    Biofabrication; 2016 Jan; 8(1):015004. PubMed ID: 26741237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices.
    Yeon JH; Ryu HR; Chung M; Hu QP; Jeon NL
    Lab Chip; 2012 Aug; 12(16):2815-22. PubMed ID: 22767334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.