These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25532627)

  • 81. Water-soluble diiron hexacarbonyl complex as a CO-RM: controllable CO-releasing, releasing mechanism and biocompatibility.
    Long L; Jiang X; Wang X; Xiao Z; Liu X
    Dalton Trans; 2013 Nov; 42(44):15663-9. PubMed ID: 24045860
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A multi-drug delivery system with sequential release using titania nanotube arrays.
    Aw MS; Addai-Mensah J; Losic D
    Chem Commun (Camb); 2012 Apr; 48(27):3348-50. PubMed ID: 22367413
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Fast fluorescence switching within hydrophilic supramolecular assemblies.
    Cusido J; Battal M; Deniz E; Yildiz I; Sortino S; Raymo FM
    Chemistry; 2012 Aug; 18(33):10399-407. PubMed ID: 22644948
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Amphiphilic porphyrin assembly as a highly selective chemosensor for organic mercury in water.
    Liu BW; Chen Y; Song BE; Liu Y
    Chem Commun (Camb); 2011 Apr; 47(15):4418-20. PubMed ID: 21390398
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Monitoring controlled release of payload from gold nanocages using surface enhanced Raman scattering.
    Tian L; Gandra N; Singamaneni S
    ACS Nano; 2013 May; 7(5):4252-60. PubMed ID: 23577650
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Green amorphous nanoplex as a new supersaturating drug delivery system.
    Cheow WS; Hadinoto K
    Langmuir; 2012 Apr; 28(15):6265-75. PubMed ID: 22439687
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Multiwalled carbon nanotubes and NaYF4:Yb3+/Er3+ nanoparticle-doped bilayer hydrogel for concurrent NIR-triggered drug release and up-conversion luminescence tagging.
    Cheng Z; Chai R; Ma P; Dai Y; Kang X; Lian H; Hou Z; Li C; Lin J
    Langmuir; 2013 Jul; 29(30):9573-80. PubMed ID: 23829598
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Near-infrared upconversion nanoparticles for bio-applications.
    Dou QQ; Guo HC; Ye E
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():635-43. PubMed ID: 25491873
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Transporting and shielding photosensitisers by using water-soluble organometallic cages: a new strategy in drug delivery and photodynamic therapy.
    Therrien B
    Chemistry; 2013 Jun; 19(26):8378-86. PubMed ID: 23737435
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Double-walled microspheres loaded with meglumine antimoniate: preparation, characterization and in vitro release study.
    Navaei A; Rasoolian M; Momeni A; Emami S; Rafienia M
    Drug Dev Ind Pharm; 2014 Jun; 40(6):701-10. PubMed ID: 23594302
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Hydrophobic oligopeptide-based star-block copolymers as unimolecular nanocarriers for poorly water-soluble drugs.
    Li J; Li J; Xu S; Zhang D; Liu D
    Colloids Surf B Biointerfaces; 2013 Oct; 110():183-90. PubMed ID: 23722014
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The preparation of colloidally stable, water-soluble, biocompatible, semiconductor nanocrystals with a small hydrodynamic diameter.
    Lees EE; Nguyen TL; Clayton AH; Muir BW; Mulvaney P
    ACS Nano; 2009 May; 3(5):1121-8. PubMed ID: 19388661
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Preparation of a novel organo-soluble chitosan grafted polycaprolactone copolymer for drug delivery.
    Zhang P; Cao M
    Int J Biol Macromol; 2014 Apr; 65():21-7. PubMed ID: 24418345
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Fluorescence investigation of a specific structure formed by aggregation of transglycosylated stevias: solubilizing effect of poorly water-soluble drugs.
    Uchiyama H; Tozuka Y; Asamoto F; Takeuchi H
    Eur J Pharm Sci; 2011 May; 43(1-2):71-7. PubMed ID: 21463678
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Oligoalanine-modified Pluronic-F127 nanocarriers for the delivery of curcumin with enhanced entrapment efficiency.
    Peng S; Hung WL; Peng YS; Chu IM
    J Biomater Sci Polym Ed; 2014; 25(12):1225-39. PubMed ID: 24930937
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery.
    Rijcken CJ; Soga O; Hennink WE; van Nostrum CF
    J Control Release; 2007 Jul; 120(3):131-48. PubMed ID: 17582642
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles.
    Bachar M; Mandelbaum A; Portnaya I; Perlstein H; Even-Chen S; Barenholz Y; Danino D
    J Control Release; 2012 Jun; 160(2):164-71. PubMed ID: 22266050
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Therapeutic Potential of Two Visible Light Responsive Luminescent photoCORMs: Enhanced Cellular Internalization Driven by Lipophilicity.
    Pinto MN; Chakraborty I; Jimenez J; Murphy K; Wenger J; Mascharak PK
    Inorg Chem; 2019 Nov; 58(21):14522-14531. PubMed ID: 31550141
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Poly(butyl cyanoacrylate) nanoparticle containing an organic photoCORM.
    Elgattar A; Washington KS; Talebzadeh S; Alwagdani A; Khalil T; Alghazwat O; Alshammri S; Pal H; Bashur C; Liao Y
    Photochem Photobiol Sci; 2019 Nov; 18(11):2666-2672. PubMed ID: 31524215
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Electrooxidation of carbon monoxide on gold nanoparticle ensemble electrodes: effects of particle coverage.
    Kumar S; Zou S
    J Phys Chem B; 2005 Aug; 109(33):15707-13. PubMed ID: 16852993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.