BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 25532820)

  • 21. Use of Non-invasive Parameters and Machine-Learning Algorithms for Predicting Future Risk of Type 2 Diabetes: A Retrospective Cohort Study of Health Data From Kuwait.
    Farran B; AlWotayan R; Alkandari H; Al-Abdulrazzaq D; Channanath A; Thanaraj TA
    Front Endocrinol (Lausanne); 2019; 10():624. PubMed ID: 31572303
    [No Abstract]   [Full Text] [Related]  

  • 22. Improving autocoding performance of rare categories in injury classification: Is more training data or filtering the solution?
    Nanda G; Vallmuur K; Lehto M
    Accid Anal Prev; 2018 Jan; 110():115-127. PubMed ID: 29127808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of machine learning techniques with classical statistical models in predicting health outcomes.
    Song X; Mitnitski A; Cox J; Rockwood K
    Stud Health Technol Inform; 2004; 107(Pt 1):736-40. PubMed ID: 15360910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pre-operative prediction of surgical morbidity in children: comparison of five statistical models.
    Cooper JN; Wei L; Fernandez SA; Minneci PC; Deans KJ
    Comput Biol Med; 2015 Feb; 57():54-65. PubMed ID: 25528697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictive modelling of survival and length of stay in critically ill patients using sequential organ failure scores.
    Houthooft R; Ruyssinck J; van der Herten J; Stijven S; Couckuyt I; Gadeyne B; Ongenae F; Colpaert K; Decruyenaere J; Dhaene T; De Turck F
    Artif Intell Med; 2015 Mar; 63(3):191-207. PubMed ID: 25579436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do complex models increase prediction of complex behaviours? Predicting driving ability in people with brain disorders.
    Innes CR; Lee D; Chen C; Ponder-Sutton AM; Melzer TR; Jones RD
    Q J Exp Psychol (Hove); 2011 Sep; 64(9):1714-25. PubMed ID: 21563020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation.
    Guijo-Rubio D; Briceño J; Gutiérrez PA; Ayllón MD; Ciria R; Hervás-Martínez C
    PLoS One; 2021; 16(5):e0252068. PubMed ID: 34019601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers.
    Regnier-Coudert O; McCall J; Lothian R; Lam T; McClinton S; N'dow J
    Artif Intell Med; 2012 May; 55(1):25-35. PubMed ID: 22206941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches.
    Wu J; Roy J; Stewart WF
    Med Care; 2010 Jun; 48(6 Suppl):S106-13. PubMed ID: 20473190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of lung cancer patient survival via supervised machine learning classification techniques.
    Lynch CM; Abdollahi B; Fuqua JD; de Carlo AR; Bartholomai JA; Balgemann RN; van Berkel VH; Frieboes HB
    Int J Med Inform; 2017 Dec; 108():1-8. PubMed ID: 29132615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multinomial logistic regression ensembles.
    Lee K; Ahn H; Moon H; Kodell RL; Chen JJ
    J Biopharm Stat; 2013 May; 23(3):681-94. PubMed ID: 23611203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Support vector methods for survival analysis: a comparison between ranking and regression approaches.
    Van Belle V; Pelckmans K; Van Huffel S; Suykens JA
    Artif Intell Med; 2011 Oct; 53(2):107-18. PubMed ID: 21821401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods.
    Liang JD; Ping XO; Tseng YJ; Huang GT; Lai F; Yang PM
    Comput Methods Programs Biomed; 2014 Dec; 117(3):425-34. PubMed ID: 25278224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine Learning Versus Logistic Regression Methods for 2-Year Mortality Prognostication in a Small, Heterogeneous Glioma Database.
    Panesar SS; D'Souza RN; Yeh FC; Fernandez-Miranda JC
    World Neurosurg X; 2019 Apr; 2():100012. PubMed ID: 31218287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mortality prediction of rats in acute hemorrhagic shock using machine learning techniques.
    Kim KA; Choi JY; Yoo TK; Kim SK; Chung K; Kim DW
    Med Biol Eng Comput; 2013 Sep; 51(9):1059-67. PubMed ID: 23793529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models.
    Austin PC; Steyerberg EW
    Stat Methods Med Res; 2017 Apr; 26(2):796-808. PubMed ID: 25411322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions.
    Milenković J; Hertl K; Košir A; Zibert J; Tasič JF
    Artif Intell Med; 2013 Jun; 58(2):101-14. PubMed ID: 23548472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A decision support system to facilitate management of patients with acute gastrointestinal bleeding.
    Chu A; Ahn H; Halwan B; Kalmin B; Artifon EL; Barkun A; Lagoudakis MG; Kumar A
    Artif Intell Med; 2008 Mar; 42(3):247-59. PubMed ID: 18063351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hadamard Kernel SVM with applications for breast cancer outcome predictions.
    Jiang H; Ching WK; Cheung WS; Hou W; Yin H
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):138. PubMed ID: 29322919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.