BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25533172)

  • 1. Extended Klein edges in graphene.
    He K; Robertson AW; Lee S; Yoon E; Lee GD; Warner JH
    ACS Nano; 2014 Dec; 8(12):12272-9. PubMed ID: 25533172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Klein Edge Doublets from Graphene Monolayers.
    Kim JS; Warner JH; Robertson AW; Kirkland AI
    ACS Nano; 2015 Sep; 9(9):8916-22. PubMed ID: 26284501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of the reconstruction of zigzag edges in graphene.
    He K; Robertson AW; Fan Y; Allen CS; Lin YC; Suenaga K; Kirkland AI; Warner JH
    ACS Nano; 2015 May; 9(5):4786-95. PubMed ID: 25880335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elongated Silicon-Carbon Bonds at Graphene Edges.
    Chen Q; Robertson AW; He K; Gong C; Yoon E; Kirkland AI; Lee GD; Warner JH
    ACS Nano; 2016 Jan; 10(1):142-9. PubMed ID: 26619146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomically perfect torn graphene edges and their reversible reconstruction.
    Kim K; Coh S; Kisielowski C; Crommie MF; Louie SG; Cohen ML; Zettl A
    Nat Commun; 2013; 4():2723. PubMed ID: 24177166
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Yao F; Xiao Z; Qiao J; Ji W; Xie RJ; Jin C
    Nanoscale; 2021 Feb; 13(7):4133-4139. PubMed ID: 33575688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-energy termination of graphene edges via the formation of narrow nanotubes.
    Ivanovskaya VV; Zobelli A; Wagner P; Heggie MI; Briddon PR; Rayson MJ; Ewels CP
    Phys Rev Lett; 2011 Aug; 107(6):065502. PubMed ID: 21902339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-free graphene edges.
    He K; Lee GD; Robertson AW; Yoon E; Warner JH
    Nat Commun; 2014; 5():3040. PubMed ID: 24413607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene edges and beyond: temperature-driven structures and electromagnetic properties.
    Hyun C; Yun J; Cho WJ; Myung CW; Park J; Lee G; Lee Z; Kim K; Kim KS
    ACS Nano; 2015 May; 9(5):4669-74. PubMed ID: 26006783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene at the edge: stability and dynamics.
    Girit CO; Meyer JC; Erni R; Rossell MD; Kisielowski C; Yang L; Park CH; Crommie MF; Cohen ML; Louie SG; Zettl A
    Science; 2009 Mar; 323(5922):1705-8. PubMed ID: 19325110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic and Quantum Transport Properties of Atomically Identified Si Point Defects in Graphene.
    Lopez-Bezanilla A; Zhou W; Idrobo JC
    J Phys Chem Lett; 2014 May; 5(10):1711-8. PubMed ID: 26270371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially dependent lattice deformations for dislocations at the edges of graphene.
    Gong C; He K; Robertson AW; Yoon E; Lee GD; Warner JH
    ACS Nano; 2015 Jan; 9(1):656-62. PubMed ID: 25496495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bond length and charge density variations within extended arm chair defects in graphene.
    Warner JH; Lee GD; He K; Robertson AW; Yoon E; Kirkland AI
    ACS Nano; 2013 Nov; 7(11):9860-6. PubMed ID: 24148018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Spin Distribution and Electronic Properties in FeN
    Oguz IC; Jaouen F; Mineva T
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the stability of folded graphene edges against electron beam induced sputtering with atomic resolution.
    Warner JH; Rümmeli MH; Bachmatiuk A; Büchner B
    Nanotechnology; 2010 Aug; 21(32):325702. PubMed ID: 20639589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, stability, edge states, and aromaticity of graphene ribbons.
    Wassmann T; Seitsonen AP; Saitta AM; Lazzeri M; Mauri F
    Phys Rev Lett; 2008 Aug; 101(9):096402. PubMed ID: 18851629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-surface synthesis of graphene nanoribbons with zigzag edge topology.
    Ruffieux P; Wang S; Yang B; Sánchez-Sánchez C; Liu J; Dienel T; Talirz L; Shinde P; Pignedoli CA; Passerone D; Dumslaff T; Feng X; Müllen K; Fasel R
    Nature; 2016 Mar; 531(7595):489-92. PubMed ID: 27008967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.
    Jia X; Hofmann M; Meunier V; Sumpter BG; Campos-Delgado J; Romo-Herrera JM; Son H; Hsieh YP; Reina A; Kong J; Terrones M; Dresselhaus MS
    Science; 2009 Mar; 323(5922):1701-5. PubMed ID: 19325109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic state of oxidized nanographene edge with atomically sharp zigzag boundaries.
    Ohtsuka M; Fujii S; Kiguchi M; Enoki T
    ACS Nano; 2013 Aug; 7(8):6868-74. PubMed ID: 23869576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.