BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25533272)

  • 1. Development of a scoliotic spine model for biomechanical in vitro studies.
    Wilke HJ; Mathes B; Midderhoff S; Graf N
    Clin Biomech (Bristol, Avon); 2015 Feb; 30(2):182-7. PubMed ID: 25533272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities.
    McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H
    Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in alignment of the scoliotic spine in response to lateral bending.
    Beuerlein MJ; Raso VJ; Hill DL; Moreau MJ; Mahood JK
    Spine (Phila Pa 1976); 2003 Apr; 28(7):693-8. PubMed ID: 12671357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro disc pressure profiles below scoliosis fusion constructs.
    Buttermann GR; Beaubien BP
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2134-42. PubMed ID: 18794754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    J Biomech Eng; 2002 Dec; 124(6):784-90. PubMed ID: 12596648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: a finite element analysis of different features of orthobiom.
    Rohlmann A; Zander T; Burra NK; Bergmann G
    Eur Spine J; 2008 Feb; 17(2):217-23. PubMed ID: 17712575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal shape changes resulting from scoliotic spine surgical instrumentation expressed as intervertebral rotations and centers of rotation.
    Petit Y; Aubin CE; Labelle H
    J Biomech; 2004 Feb; 37(2):173-80. PubMed ID: 14706319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral spinal profile in school-screening referrals with and without late onset idiopathic scoliosis 10 degrees-20 degrees.
    Grivas TB; Dangas S; Samelis P; Maziotou C; Kandris K
    Stud Health Technol Inform; 2002; 91():25-31. PubMed ID: 15457689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmental vertebral rotation in early scoliosis.
    Xiong B; Sevastik J; Hedlund R; Sevastik B
    Eur Spine J; 1993 Jun; 2(1):37-41. PubMed ID: 20058446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical modeling of posterior instrumentation of the scoliotic spine.
    Aubin CE; Petit Y; Stokes IA; Poulin F; Gardner-Morse M; Labelle H
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):27-32. PubMed ID: 12623435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is a collagen scaffold for a tissue engineered nucleus replacement capable of restoring disc height and stability in an animal model?
    Wilke HJ; Heuer F; Neidlinger-Wilke C; Claes L
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S433-8. PubMed ID: 16868784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Correlation study between spinal curvatures and vertebral and disk deformities in idiopathic scoliosis].
    Villemure I; Aubin CE; Dansereau J; Petit Y; Labelle H
    Ann Chir; 1999; 53(8):798-807. PubMed ID: 10584392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical properties in motion of lumbar spines with degenerative scoliosis.
    Rustenburg CME; Kingma I; Holewijn RM; Faraj SSA; van der Veen A; Bisschop A; de Kleuver M; Emanuel KS
    J Biomech; 2020 Mar; 102():109495. PubMed ID: 31767285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thoracic range of motion, stability, and correlation to imaging-determined degeneration.
    Healy AT; Mageswaran P; Lubelski D; Rosenbaum BP; Matheus V; Benzel EC; Mroz TE
    J Neurosurg Spine; 2015 Aug; 23(2):170-7. PubMed ID: 25978074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the pathological role of intervertebral disc and facet joint in the development of degenerative scoliosis by biomechanical methods.
    Zheng J; Yang Y; Cheng B; Cook D
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():83-88. PubMed ID: 31445401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    Eur Spine J; 2004 Feb; 13(1):83-90. PubMed ID: 14730437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of the conservative treatment in idiopathic scoliotic curves in surgical "grey-area".
    Aulisa L; Lupparelli S; Pola E; Aulisa AG; Mastantuoni G; Pitta L
    Stud Health Technol Inform; 2002; 91():412-8. PubMed ID: 15457767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical assessment of thoracic spine stapling.
    Puttlitz CM; Masaru F; Barkley A; Diab M; Acaroglu E
    Spine (Phila Pa 1976); 2007 Apr; 32(7):766-71. PubMed ID: 17414910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests.
    Lafon Y; Lafage V; Steib JP; Dubousset J; Skalli W
    Spine (Phila Pa 1976); 2010 Jan; 35(2):186-93. PubMed ID: 20081515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.