These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 25533272)
1. Development of a scoliotic spine model for biomechanical in vitro studies. Wilke HJ; Mathes B; Midderhoff S; Graf N Clin Biomech (Bristol); 2015 Feb; 30(2):182-7. PubMed ID: 25533272 [TBL] [Abstract][Full Text] [Related]
2. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis. Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities. McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633 [TBL] [Abstract][Full Text] [Related]
4. Changes in alignment of the scoliotic spine in response to lateral bending. Beuerlein MJ; Raso VJ; Hill DL; Moreau MJ; Mahood JK Spine (Phila Pa 1976); 2003 Apr; 28(7):693-8. PubMed ID: 12671357 [TBL] [Abstract][Full Text] [Related]
5. In vitro disc pressure profiles below scoliosis fusion constructs. Buttermann GR; Beaubien BP Spine (Phila Pa 1976); 2008 Sep; 33(20):2134-42. PubMed ID: 18794754 [TBL] [Abstract][Full Text] [Related]
6. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation. Villemure I; Aubin CE; Dansereau J; Labelle H J Biomech Eng; 2002 Dec; 124(6):784-90. PubMed ID: 12596648 [TBL] [Abstract][Full Text] [Related]
7. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: a finite element analysis of different features of orthobiom. Rohlmann A; Zander T; Burra NK; Bergmann G Eur Spine J; 2008 Feb; 17(2):217-23. PubMed ID: 17712575 [TBL] [Abstract][Full Text] [Related]
8. Spinal shape changes resulting from scoliotic spine surgical instrumentation expressed as intervertebral rotations and centers of rotation. Petit Y; Aubin CE; Labelle H J Biomech; 2004 Feb; 37(2):173-80. PubMed ID: 14706319 [TBL] [Abstract][Full Text] [Related]
9. Lateral spinal profile in school-screening referrals with and without late onset idiopathic scoliosis 10 degrees-20 degrees. Grivas TB; Dangas S; Samelis P; Maziotou C; Kandris K Stud Health Technol Inform; 2002; 91():25-31. PubMed ID: 15457689 [TBL] [Abstract][Full Text] [Related]
10. Segmental vertebral rotation in early scoliosis. Xiong B; Sevastik J; Hedlund R; Sevastik B Eur Spine J; 1993 Jun; 2(1):37-41. PubMed ID: 20058446 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical modeling of posterior instrumentation of the scoliotic spine. Aubin CE; Petit Y; Stokes IA; Poulin F; Gardner-Morse M; Labelle H Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):27-32. PubMed ID: 12623435 [TBL] [Abstract][Full Text] [Related]
12. Is a collagen scaffold for a tissue engineered nucleus replacement capable of restoring disc height and stability in an animal model? Wilke HJ; Heuer F; Neidlinger-Wilke C; Claes L Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S433-8. PubMed ID: 16868784 [TBL] [Abstract][Full Text] [Related]
13. [Correlation study between spinal curvatures and vertebral and disk deformities in idiopathic scoliosis]. Villemure I; Aubin CE; Dansereau J; Petit Y; Labelle H Ann Chir; 1999; 53(8):798-807. PubMed ID: 10584392 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical properties in motion of lumbar spines with degenerative scoliosis. Rustenburg CME; Kingma I; Holewijn RM; Faraj SSA; van der Veen A; Bisschop A; de Kleuver M; Emanuel KS J Biomech; 2020 Mar; 102():109495. PubMed ID: 31767285 [TBL] [Abstract][Full Text] [Related]
15. Thoracic range of motion, stability, and correlation to imaging-determined degeneration. Healy AT; Mageswaran P; Lubelski D; Rosenbaum BP; Matheus V; Benzel EC; Mroz TE J Neurosurg Spine; 2015 Aug; 23(2):170-7. PubMed ID: 25978074 [TBL] [Abstract][Full Text] [Related]
16. Exploring the pathological role of intervertebral disc and facet joint in the development of degenerative scoliosis by biomechanical methods. Zheng J; Yang Y; Cheng B; Cook D Clin Biomech (Bristol); 2019 Dec; 70():83-88. PubMed ID: 31445401 [TBL] [Abstract][Full Text] [Related]
17. Biomechanics of the conservative treatment in idiopathic scoliotic curves in surgical "grey-area". Aulisa L; Lupparelli S; Pola E; Aulisa AG; Mastantuoni G; Pitta L Stud Health Technol Inform; 2002; 91():412-8. PubMed ID: 15457767 [TBL] [Abstract][Full Text] [Related]
18. A biomechanical assessment of thoracic spine stapling. Puttlitz CM; Masaru F; Barkley A; Diab M; Acaroglu E Spine (Phila Pa 1976); 2007 Apr; 32(7):766-71. PubMed ID: 17414910 [TBL] [Abstract][Full Text] [Related]
19. In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests. Lafon Y; Lafage V; Steib JP; Dubousset J; Skalli W Spine (Phila Pa 1976); 2010 Jan; 35(2):186-93. PubMed ID: 20081515 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical analysis of a disc prosthesis distal to a scoliosis model. Quirno M; Kamerlink JR; Valdevit A; Kang M; Yaszay B; Duncan N; Boachie-Adjei O; Lonner BS; Errico TJ Spine (Phila Pa 1976); 2009 Jun; 34(14):1470-5. PubMed ID: 19525838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]