These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 25533323)
1. Improving the passive permeability of macrocyclic peptides: Balancing permeability with other physicochemical properties. Thansandote P; Harris RM; Dexter HL; Simpson GL; Pal S; Upton RJ; Valko K Bioorg Med Chem; 2015 Jan; 23(2):322-7. PubMed ID: 25533323 [TBL] [Abstract][Full Text] [Related]
2. Exploring experimental and computational markers of cyclic peptides: Charting islands of permeability. Wang CK; Northfield SE; Swedberg JE; Colless B; Chaousis S; Price DA; Liras S; Craik DJ Eur J Med Chem; 2015 Jun; 97():202-13. PubMed ID: 25974856 [TBL] [Abstract][Full Text] [Related]
3. Design Principles for Intestinal Permeability of Cyclic Peptides. Mathiowetz AM Methods Mol Biol; 2019; 2001():1-15. PubMed ID: 31134564 [TBL] [Abstract][Full Text] [Related]
4. Going Out on a Limb: Delineating The Effects of β-Branching, N-Methylation, and Side Chain Size on the Passive Permeability, Solubility, and Flexibility of Sanguinamide A Analogues. Bockus AT; Schwochert JA; Pye CR; Townsend CE; Sok V; Bednarek MA; Lokey RS J Med Chem; 2015 Sep; 58(18):7409-18. PubMed ID: 26308180 [TBL] [Abstract][Full Text] [Related]
5. Rationalization of the Membrane Permeability Differences in a Series of Analogue Cyclic Decapeptides. Witek J; Wang S; Schroeder B; Lingwood R; Dounas A; Roth HJ; Fouché M; Blatter M; Lemke O; Keller B; Riniker S J Chem Inf Model; 2019 Jan; 59(1):294-308. PubMed ID: 30457855 [TBL] [Abstract][Full Text] [Related]
6. A New Amino Acid for Improving Permeability and Solubility in Macrocyclic Peptides through Side Chain-to-Backbone Hydrogen Bonding. Taechalertpaisarn J; Ono S; Okada O; Johnstone TC; Lokey RS J Med Chem; 2022 Mar; 65(6):5072-5084. PubMed ID: 35275623 [TBL] [Abstract][Full Text] [Related]
7. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. Rezai T; Bock JE; Zhou MV; Kalyanaraman C; Lokey RS; Jacobson MP J Am Chem Soc; 2006 Nov; 128(43):14073-80. PubMed ID: 17061890 [TBL] [Abstract][Full Text] [Related]
8. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. Rezai T; Yu B; Millhauser GL; Jacobson MP; Lokey RS J Am Chem Soc; 2006 Mar; 128(8):2510-1. PubMed ID: 16492015 [TBL] [Abstract][Full Text] [Related]
9. Solution Conformations Explain the Chameleonic Behaviour of Macrocyclic Drugs. Danelius E; Poongavanam V; Peintner S; Wieske LHE; Erdélyi M; Kihlberg J Chemistry; 2020 Apr; 26(23):5231-5244. PubMed ID: 32027758 [TBL] [Abstract][Full Text] [Related]
10. Flexibility versus Rigidity for Orally Bioavailable Cyclic Hexapeptides. Nielsen DS; Lohman RJ; Hoang HN; Hill TA; Jones A; Lucke AJ; Fairlie DP Chembiochem; 2015 Nov; 16(16):2289-93. PubMed ID: 26336864 [TBL] [Abstract][Full Text] [Related]
11. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. Hewitt WM; Leung SS; Pye CR; Ponkey AR; Bednarek M; Jacobson MP; Lokey RS J Am Chem Soc; 2015 Jan; 137(2):715-21. PubMed ID: 25517352 [TBL] [Abstract][Full Text] [Related]
12. Lipophilic Permeability Efficiency Reconciles the Opposing Roles of Lipophilicity in Membrane Permeability and Aqueous Solubility. Naylor MR; Ly AM; Handford MJ; Ramos DP; Pye CR; Furukawa A; Klein VG; Noland RP; Edmondson Q; Turmon AC; Hewitt WM; Schwochert J; Townsend CE; Kelly CN; Blanco MJ; Lokey RS J Med Chem; 2018 Dec; 61(24):11169-11182. PubMed ID: 30395703 [TBL] [Abstract][Full Text] [Related]
14. Membrane Permeability in a Large Macrocyclic Peptide Driven by a Saddle-Shaped Conformation. Faris JH; Adaligil E; Popovych N; Ono S; Takahashi M; Nguyen H; Plise E; Taechalertpaisarn J; Lee HW; Koehler MFT; Cunningham CN; Lokey RS J Am Chem Soc; 2024 Feb; 146(7):4582-4591. PubMed ID: 38330910 [TBL] [Abstract][Full Text] [Related]
15. Molecular descriptors suggest stapling as a strategy for optimizing membrane permeability of cyclic peptides. Li J; Kannan S; Aronica P; Brown CJ; Partridge AW; Verma CS J Chem Phys; 2022 Feb; 156(6):065101. PubMed ID: 35168356 [TBL] [Abstract][Full Text] [Related]
16. Passive Membrane Permeability in Cyclic Peptomer Scaffolds Is Robust to Extensive Variation in Side Chain Functionality and Backbone Geometry. Furukawa A; Townsend CE; Schwochert J; Pye CR; Bednarek MA; Lokey RS J Med Chem; 2016 Oct; 59(20):9503-9512. PubMed ID: 27690434 [TBL] [Abstract][Full Text] [Related]
17. Effect of Flexibility, Lipophilicity, and the Location of Polar Residues on the Passive Membrane Permeability of a Series of Cyclic Decapeptides. Wang S; König G; Roth HJ; Fouché M; Rodde S; Riniker S J Med Chem; 2021 Sep; 64(17):12761-12773. PubMed ID: 34406766 [TBL] [Abstract][Full Text] [Related]
18. Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development. Buckton LK; Rahimi MN; McAlpine SR Chemistry; 2021 Jan; 27(5):1487-1513. PubMed ID: 32875673 [TBL] [Abstract][Full Text] [Related]
19. Design and Development of a Cyclic Decapeptide Scaffold with Suitable Properties for Bioavailability and Oral Exposure. Fouché M; Schäfer M; Berghausen J; Desrayaud S; Blatter M; Piéchon P; Dix I; Martin Garcia A; Roth HJ ChemMedChem; 2016 May; 11(10):1048-59. PubMed ID: 27154275 [TBL] [Abstract][Full Text] [Related]
20. Intramolecular hydrogen bonding in medicinal chemistry. Kuhn B; Mohr P; Stahl M J Med Chem; 2010 Mar; 53(6):2601-11. PubMed ID: 20175530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]