These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25533516)

  • 1. Electro-optical detection of single λ-DNA.
    Liu S; Wall TA; Ozcelik D; Parks JW; Hawkins AR; Schmidt H
    Chem Commun (Camb); 2015 Feb; 51(11):2084-7. PubMed ID: 25533516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes.
    Jain T; Guerrero RJ; Aguilar CA; Karnik R
    Anal Chem; 2013 Apr; 85(8):3871-8. PubMed ID: 23347165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid optofluidic integration.
    Parks JW; Cai H; Zempoaltecatl L; Yuzvinsky TD; Leake K; Hawkins AR; Schmidt H
    Lab Chip; 2013 Oct; 13(20):4118-23. PubMed ID: 23969694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropic cages for trapping DNA near a nanopore.
    Liu X; Mihovilovic Skanata M; Stein D
    Nat Commun; 2015 Feb; 6():6222. PubMed ID: 25648853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlated electrical and optical analysis of single nanoparticles and biomolecules on a nanopore-gated optofluidic chip.
    Liu S; Zhao Y; Parks JW; Deamer DW; Hawkins AR; Schmidt H
    Nano Lett; 2014 Aug; 14(8):4816-20. PubMed ID: 25006747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inserting and manipulating DNA in a nanopore with optical tweezers.
    Keyser UF; van der Does J; Dekker C; Dekker NH
    Methods Mol Biol; 2009; 544():95-112. PubMed ID: 19488696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-driven translocation of DNA through a high throughput conical solid-state nanopore.
    Liu Q; Wu H; Wu L; Xie X; Kong J; Ye X; Liu L
    PLoS One; 2012; 7(9):e46014. PubMed ID: 23029365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled gating and electrical detection of single 50S ribosomal subunits through a solid-state nanopore in a microfluidic chip.
    Rudenko MI; Holmes MR; Ermolenko DN; Lunt EJ; Gerhardt S; Noller HF; Deamer DW; Hawkins A; Schmidt H
    Biosens Bioelectron; 2011 Nov; 29(1):34-9. PubMed ID: 21855314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.
    Kühn S; Phillips BS; Lunt EJ; Hawkins AR; Schmidt H
    Lab Chip; 2010 Jan; 10(2):189-94. PubMed ID: 20066246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle focusing mechanisms in λ-DNA solution flowing in a straight microchannel.
    Chen D; Huang Q; Ni Z; Xiang N
    Electrophoresis; 2024 Aug; 45(15-16):1379-1388. PubMed ID: 38343171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing.
    Measor P; Kühn S; Lunt EJ; Phillips BS; Hawkins AR; Schmidt H
    Opt Express; 2009 Dec; 17(26):24342-8. PubMed ID: 20052144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single DNA molecule isolation and trapping in a microfluidic device.
    Kumemura M; Collard D; Yamahata C; Sakaki N; Hashiguchi G; Fujita H
    Chemphyschem; 2007 Aug; 8(12):1875-80. PubMed ID: 17628880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On demand delivery and analysis of single molecules on a programmable nanopore-optofluidic device.
    Rahman M; Stott MA; Harrington M; Li Y; Sampad MJN; Lancaster L; Yuzvinsky TD; Noller HF; Hawkins AR; Schmidt H
    Nat Commun; 2019 Aug; 10(1):3712. PubMed ID: 31420559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.
    Bafna JA; Soni GV
    PLoS One; 2016; 11(6):e0157399. PubMed ID: 27285088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Chip Stretching, Sorting, and Electro-Optical Nanopore Sensing of Ultralong Human Genomic DNA.
    Zrehen A; Huttner D; Meller A
    ACS Nano; 2019 Dec; 13(12):14388-14398. PubMed ID: 31756076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled nanowire arrays as three-dimensional nanopores for filtration of DNA molecules.
    Rahong S; Yasui T; Yanagida T; Nagashima K; Kanai M; Meng G; He Y; Zhuge F; Kaji N; Kawai T; Baba Y
    Anal Sci; 2015; 31(3):153-7. PubMed ID: 25765268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA tracking within a nanochannel: device fabrication and experiments.
    Mokkapati VR; Di Virgilio V; Shen C; Mollinger J; Bastemeijer J; Bossche A
    Lab Chip; 2011 Aug; 11(16):2711-9. PubMed ID: 21734983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planar optofluidic chip for single particle detection, manipulation, and analysis.
    Yin D; Lunt EJ; Rudenko MI; Deamer DW; Hawkins AR; Schmidt H
    Lab Chip; 2007 Sep; 7(9):1171-5. PubMed ID: 17713616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced discrimination of DNA molecules in nanofluidic channels through multiple measurements.
    Sen YH; Jain T; Aguilar CA; Karnik R
    Lab Chip; 2012 Mar; 12(6):1094-101. PubMed ID: 22298224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.