BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25534181)

  • 21. Equilibrium and thermodynamic studies of Cd (II) biosorption by chemically modified orange peel.
    Kumar A; Kumar V
    J Environ Biol; 2016 Mar; 37(2):201-6. PubMed ID: 27097438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Treatment of electroplating industry wastewater: a review on the various techniques.
    Rajoria S; Vashishtha M; Sangal VK
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72196-72246. PubMed ID: 35084684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater.
    Sankararamakrishnan N; Sharma AK; Sanghi R
    J Hazard Mater; 2007 Sep; 148(1-2):353-9. PubMed ID: 17397997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Techno-economic estimation of electroplating wastewater treatment using zero-valent iron nanoparticles: batch optimization, continuous feed, and scaling up studies.
    Hamdy A; Mostafa MK; Nasr M
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):25372-25385. PubMed ID: 31264158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovering heavy metals from electroplating wastewater and their conversion into Zn
    Fu D; Kurniawan TA; Avtar R; Xu P; Othman MHD
    Chemosphere; 2021 May; 271():129861. PubMed ID: 33736203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fenton-biological treatment of reverse osmosis membrane concentrate from a metal plating wastewater recycle system.
    Huang RM; He JY; Zhao J; Luo Q; Huang CM
    Environ Technol; 2011 Apr; 32(5-6):515-22. PubMed ID: 21877532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorptive removal of nickel(II) ions from aqueous environment: A review.
    Raval NP; Shah PU; Shah NK
    J Environ Manage; 2016 Sep; 179():1-20. PubMed ID: 27149285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SEM and XRD for removal of heavy metals from industrial wastewater and characterization of chicken eggshell.
    Amin S; Abbas M; Tahir A; Ghani N; Abrar A; Aslam F; Ahmad S
    Microsc Res Tech; 2022 Jul; 85(7):2587-2595. PubMed ID: 35388578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of Cr(VI) from aqueous and electroplating wastewater.
    Bishnoi NR; Bajaj M; Sharma N
    Environ Technol; 2004 Aug; 25(8):899-905. PubMed ID: 15366557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of low concentrations of nickel ions in electroplating wastewater using capacitive deionization technology.
    Wang C; Li T; Yu G; Deng S
    Chemosphere; 2021 Dec; 284():131341. PubMed ID: 34323794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing cell preparation technique to enhance adsorption capacity of pseudomonas putida 5-x to heavy metal ions.
    Wang L; Zhou Q; Zheng GH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(11):2041-55. PubMed ID: 16287640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reusable nanomaterial and plant biomass composites for the removal of Methylene Blue from water.
    Jain N; Basniwal RK; Suman ; Srivastava AK; Jain VK
    Environ Technol; 2010 Jun; 31(7):755-60. PubMed ID: 20586237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater.
    Gayathri R; Gopinath KP; Kumar PS
    Chemosphere; 2021 Jan; 262():128031. PubMed ID: 33182077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ni2+ removal and recovery from electroplating effluent by Pseudomonas putida 5-x cell biomass.
    Wang L; Chua H; Wong PK; Lo WH; Yu PH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Mar; 38(3):521-31. PubMed ID: 12680580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly(amidoxime) ligand derived from waste palm fiber for the removal of heavy metals from electroplating wastewater.
    Rahman ML; Fui CJ; Sarjadi MS; Arshad SE; Musta B; Abdullah MH; Sarkar SM; O'Reilly EJ
    Environ Sci Pollut Res Int; 2020 Sep; 27(27):34541-34556. PubMed ID: 32557073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new sand adsorbent for the removal and reuse of nickel ions from aqueous solutions.
    Tao W; Qi L; Duan H; Liu S
    Water Sci Technol; 2017 Apr; 75(7-8):1812-1819. PubMed ID: 28452773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Semicontinuous enhanced electroreduction of Cr(VI) in wastewater by cathode constructed of copper rods coated with palladium nanoparticles followed by adsorption.
    Tabatabaei S; Forouzesh Rad B; Baghdadi M
    Chemosphere; 2020 Jul; 251():126309. PubMed ID: 32443244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of chromium from electroplating industry effluents by ion exchange resins.
    Cavaco SA; Fernandes S; Quina MM; Ferreira LM
    J Hazard Mater; 2007 Jun; 144(3):634-8. PubMed ID: 17336455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of Orange Peel Waste as Adsorbent for Methylene Blue and Cd
    Giraldo S; Acelas NY; Ocampo-Pérez R; Padilla-Ortega E; Flórez E; Franco CA; Cortés FB; Forgionny A
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.