BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25534181)

  • 41. Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands.
    Juang RS; Kao HC; Liu FY
    J Hazard Mater; 2006 Jan; 128(1):53-9. PubMed ID: 16125313
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nickel adsorption onto polyurethane ethylene and vinyl acetate sorbents.
    Iqbal M; Ali Z; Qamar MA; Ali A; Hussain F; Abbas M; Nisar J
    Water Sci Technol; 2017 Jul; 76(1-2):219-235. PubMed ID: 28708627
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption of nickel from aqueous solution by coir based adsorbent, puresorbe.
    Nityanandi D; Subbhuraam CV; Kadirvelu K
    Environ Technol; 2006 Jan; 27(1):15-24. PubMed ID: 16457171
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-efficiency adsorption of Cd(II) and Co(II) by ethylenediaminetetraacetic dianhydride-modified orange peel as a novel synthesized adsorbent.
    Wang F; Wu P; Shu L; Huang D; Liu H
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):25748-25758. PubMed ID: 34846656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of low concentrations of nickel ions in electroplating wastewater by combination of electrodialysis and electrodeposition.
    Wang C; Li T; Yu G; Deng S
    Chemosphere; 2021 Jan; 263():128208. PubMed ID: 33297167
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on desorption and regeneration of natural pumice for iron removal from aqueous solution.
    Indah S; Helard D; Binuwara A
    Water Sci Technol; 2018 May; 2017(2):509-515. PubMed ID: 29851403
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biosorptive removal of Ni(Ii) from wastewater and industrial effluent.
    Pandey PK; Choubey S; Verma Y; Pandey M; Kamal SS; Chandrashekhar K
    Int J Environ Res Public Health; 2007 Dec; 4(4):332-9. PubMed ID: 18180544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Equilibrium study of dried orange peel for its efficiency in removal of cupric ions from water.
    Kumar K; Patavardhan SS; Lobo S; Gonsalves R
    Int J Phytoremediation; 2018 May; 20(6):593-598. PubMed ID: 29688049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modified nickel ferrite nanocomposite/functionalized chitosan as a novel adsorbent for the removal of acidic dyes.
    Zeraatkar Moghaddam A; Ghiamati E; Pourashuri A; Allahresani A
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1714-1725. PubMed ID: 30287362
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adsorptive removal of Cu(II) and Ni(II) from single-metal, binary-metal, and industrial wastewater systems by surfactant-modified alumina.
    Khobragade MU; Pal A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):385-95. PubMed ID: 25723065
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recovery of nickel ions from simulated electroplating rinse water by electrodeionization process.
    Lu H; Wang J; Yan B; Bu S
    Water Sci Technol; 2010; 61(3):729-35. PubMed ID: 20150710
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel.
    Villen-Guzman M; Gutierrez-Pinilla D; Gomez-Lahoz C; Vereda-Alonso C; Rodriguez-Maroto JM; Arhoun B
    Environ Res; 2019 Dec; 179(Pt B):108849. PubMed ID: 31677503
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced removal of phosphate using pomegranate peel-modified nickel‑lanthanum hydroxide.
    Akram M; Gao B; Pan J; Khan R; Inam MA; Xu X; Guo K; Yue Q
    Sci Total Environ; 2022 Feb; 809():151181. PubMed ID: 34699822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorption of impurities from nickel-plating baths using commercial sorbents to reduce wastewater discharges.
    Pérez Jiménez VA; Hernández-Montoya V; Ramírez-Montoya LA; Castillo-Borja F; Tovar-Gómez R; Montes-Morán MA
    J Environ Manage; 2021 Apr; 284():112024. PubMed ID: 33548751
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.
    Li C; Xie F; Ma Y; Cai T; Li H; Huang Z; Yuan G
    J Hazard Mater; 2010 Jun; 178(1-3):823-33. PubMed ID: 20197211
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosorption of chromium (VI) from aqueous solutions and ANN modelling.
    Nag S; Mondal A; Bar N; Das SK
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):18817-18835. PubMed ID: 28623504
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption.
    Lu Y; Jiang B; Fang L; Ling F; Gao J; Wu F; Zhang X
    Chemosphere; 2016 Jun; 152():415-22. PubMed ID: 26999751
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of nickel ions from industrial plating effluents using activated alumina as adsorbent.
    Revathi M; Kavitha B; Vasudevan T
    J Environ Sci Eng; 2005 Jan; 47(1):1-6. PubMed ID: 16669327
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New strategy to enhance heavy metal ions removal from synthetic wastewater by mercapto-functionalized hydrous manganese oxide via adsorption and membrane separation.
    Hezarjaribi M; Bakeri G; Sillanpää M; Chaichi MJ; Akbari S; Rahimpour A
    Environ Sci Pollut Res Int; 2021 Oct; 28(37):51808-51825. PubMed ID: 33990925
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides.
    Zhou JZ; Wu YY; Liu C; Orpe A; Liu Q; Xu ZP; Qian GR; Qiao SZ
    Environ Sci Technol; 2010 Dec; 44(23):8884-90. PubMed ID: 21062046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.