These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25534247)

  • 41. Impact of climate change on marine pelagic phenology and trophic mismatch.
    Edwards M; Richardson AJ
    Nature; 2004 Aug; 430(7002):881-4. PubMed ID: 15318219
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Why does phenology drive species distribution?
    Chuine I
    Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3149-60. PubMed ID: 20819809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Climate change and species interactions: ways forward.
    Angert AL; LaDeau SL; Ostfeld RS
    Ann N Y Acad Sci; 2013 Sep; 1297():1-7. PubMed ID: 25098378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Latitudinal clines in alternative life histories in a geometrid moth.
    Välimäki P; Kivelä SM; Mäenpää MI; Tammaru T
    J Evol Biol; 2013 Jan; 26(1):118-29. PubMed ID: 23193976
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.
    Barbraud C; Rivalan P; Inchausti P; Nevoux M; Rolland V; Weimerskirch H
    J Anim Ecol; 2011 Jan; 80(1):89-100. PubMed ID: 20840607
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities.
    Mathias A; Chesson P
    Theor Popul Biol; 2013 Mar; 84():56-71. PubMed ID: 23287702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Environmental change drives long-term recruitment and growth variation in an estuarine fish.
    Morrongiello JR; Walsh CT; Gray CA; Stocks JR; Crook DA
    Glob Chang Biol; 2014 Jun; 20(6):1844-60. PubMed ID: 24510897
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Competition, Trait Variance Dynamics, and the Evolution of a Species' Range.
    Shirani F; Miller JR
    Bull Math Biol; 2022 Jan; 84(3):37. PubMed ID: 35099649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cyclical environments drive variation in life-history strategies: a general theory of cyclical phenology.
    Park JS
    Proc Biol Sci; 2019 Mar; 286(1898):20190214. PubMed ID: 30862286
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolution in a changing environment.
    Baronchelli A; Chater N; Christiansen MH; Pastor-Satorras R
    PLoS One; 2013; 8(1):e52742. PubMed ID: 23326355
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reaction norms with bifurcations shaped by evolution.
    van Dooren TJ
    Proc Biol Sci; 2001 Feb; 268(1464):279-87. PubMed ID: 11217899
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genotype accounts for intraspecific variation in the timing and duration of multiple, sequential life-cycle events in a willow species.
    Iler AM; CaraDonna PJ; Richardson LK; Wu ET; Fant JB; Pfeiler KC; Freymiller GA; Godfrey KN; Gorman AJ; Wilson N; Whitford MD; Edmonds GA; Stratton C; Jules ES
    Am J Bot; 2023 Feb; 110(2):e16112. PubMed ID: 36478327
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The fitness value of ecological information in a variable world.
    Usinowicz J; O'Connor MI
    Ecol Lett; 2023 Apr; 26(4):621-639. PubMed ID: 36849871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Practical Guide to the Study of Distribution Limits.
    Willi Y; Van Buskirk J
    Am Nat; 2019 Jun; 193(6):773-785. PubMed ID: 31094604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in the body temperature in grouse during the annual life cycle.
    Anufriev AI; Solomonov NG; Yadrikhinskii VF; Isaev AP; Mordosova NI; Nakhodkin NA
    Dokl Biol Sci; 2010; 431():106-9. PubMed ID: 20506846
    [No Abstract]   [Full Text] [Related]  

  • 56. Phenology, seasonal timing and circannual rhythms: towards a unified framework.
    Visser ME; Caro SP; van Oers K; Schaper SV; Helm B
    Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3113-27. PubMed ID: 20819807
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A multi-model framework for the Arabidopsis life cycle.
    Zardilis A; Hume A; Millar AJ
    J Exp Bot; 2019 Apr; 70(9):2463-2477. PubMed ID: 31091320
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Developmental plasticity and the evolution of animal complex life cycles.
    Minelli A; Fusco G
    Philos Trans R Soc Lond B Biol Sci; 2010 Feb; 365(1540):631-40. PubMed ID: 20083638
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anticipated effects of abiotic environmental change on intraspecific social interactions.
    Fisher DN; Kilgour RJ; Siracusa ER; Foote JR; Hobson EA; Montiglio PO; Saltz JB; Wey TW; Wice EW
    Biol Rev Camb Philos Soc; 2021 Dec; 96(6):2661-2693. PubMed ID: 34212487
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Does a complex life cycle affect adaptation to environmental change? Genome-informed insights for characterizing selection across complex life cycle.
    Albecker MA; Wilkins LGE; Krueger-Hadfield SA; Bashevkin SM; Hahn MW; Hare MP; Kindsvater HK; Sewell MA; Lotterhos KE; Reitzel AM
    Proc Biol Sci; 2021 Dec; 288(1964):20212122. PubMed ID: 34847763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.