BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 255344)

  • 1. Transfer ribonucleic acids from eleven immunoglobulin-secreting mouse plasmacytomas. Constant and variable chromatographic profiles compared with the myeloma protein sequences.
    Marini M; Mushinski JF
    Biochim Biophys Acta; 1979 Apr; 562(2):252-70. PubMed ID: 255344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-specific tRNA modifications in mouse plasmacytomas and other tumors.
    Mushinski JF; Marini M
    Recent Results Cancer Res; 1983; 84():121-32. PubMed ID: 6551966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of the intracellular concentration of aminoacyl-tRNA synthetases and isoaccepting tRNAs during amino-acid limited growth in Escherichia coli.
    Thomale J; Nass G
    Eur J Biochem; 1978 Apr; 85(2):407-18. PubMed ID: 348470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of chromatographic patterns of aminoacyl transfer ribonucleic acid from individual mouse plasmacytomas and variability among different immunoglobulin A producing plasmacytomas and normal organs.
    Mushinski JF
    Biochemistry; 1971 Oct; 10(21):3917-24. PubMed ID: 5168564
    [No Abstract]   [Full Text] [Related]  

  • 5. Cluster analysis of aminoacyl-tRNAs from mouse plasmacytomas correlates chromatographic profiles with myeloma protein similarity, clonal origin of tumour lines, and the neoplastic nature of the tissues.
    Mushinski JF; Koziol JA; Marini M
    J Theor Biol; 1980 Aug; 85(3):507-21. PubMed ID: 6777607
    [No Abstract]   [Full Text] [Related]  

  • 6. Chromatographic analyses of isoaccepting tRNAs from avian myeloblastosis virus.
    Gallagher RE; Gallo RC
    J Virol; 1973 Sep; 12(3):449-57. PubMed ID: 4355849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complement of cytoplasmic tRNAs, including queuosine-containing tRNAs, in adult and senescent Wistar rat liver and their levels of aminoacylation.
    Cook JR; Buetow DE
    Mech Ageing Dev; 1982 Dec; 20(4):289-304. PubMed ID: 6820101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in transfer RNAs and synthetases in germinating soybean (Glycine max) cotyledons.
    Pillay DT; Gowda S
    Gerontology; 1981; 27(4):194-204. PubMed ID: 7197246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminoacyl-transfer RNA populations in mammalian cells chromatographic profiles and patterns of codon recognition.
    Hatfield D; Matthews CR; Rice M
    Biochim Biophys Acta; 1979 Oct; 564(3):414-23. PubMed ID: 259017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the rate of aminoacylation of tRNA isolated from NMRI mouse liver with tRNA isolated from Krebs II ascites or mouse plasmacytoma cells.
    Berg BH; Pryme IF
    Cancer Lett; 1981 Apr; 12(3):209-15. PubMed ID: 6911051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Position of aminoacylation of individual Escherichia coli and yeast tRNAs.
    Hecht SM; Chinualt AC
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):405-9. PubMed ID: 1108023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular distribution of aminoacyl-tRNA synthetases in various eukaryotic cells.
    Ussery MA; Tanaka WK; Hardesty B
    Eur J Biochem; 1977 Feb; 72(3):491-500. PubMed ID: 837925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminoacylation of rat liver transfer RNA with homologous and heterologous enzyme systems during aging.
    Vinayak M
    Biochem Int; 1986 Mar; 12(3):479-84. PubMed ID: 3635385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: changes in chromatography of transfer ribonucleic acids associated with stage of development.
    Vold BS
    J Bacteriol; 1973 Apr; 114(1):178-82. PubMed ID: 4633341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of adenosine triphosphate and magnesium chloride on affinity elution of aminoacyl-transfer ribonucleic acid synthetases from phosphocellulose with transfer ribonucleic acids.
    Yamada H
    J Biochem; 1978 Jun; 83(6):1577-81. PubMed ID: 353039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple isoacceptor forms of several transfer ribonucleic acids in a mutant yeast strain.
    Bell JB; Jacobson KB; Shugart LR
    Can J Biochem; 1978 Jan; 56(1):51-9. PubMed ID: 378329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in transfer ribonucleic acids accompanying encystment in Acanthamoeba castellanii.
    McMillen J; Nazario M; Jensen T
    J Bacteriol; 1974 Jan; 117(1):242-51. PubMed ID: 4808904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acids are not all initially attached to the same position on transfer RNA molecules.
    Fraser TH; Rich A
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3044-8. PubMed ID: 1103136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of thyroidectomy on heart and liver rat tRNAs: study of chromatographic and electrophoretic behaviour.
    Kessous C; Befort JJ; Befort N; Benmiloud M
    Mol Cell Endocrinol; 1983 Feb; 29(2):223-35. PubMed ID: 6550540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.