BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 255344)

  • 41. [Seasonal differences in activity of tRNA and aminoacyl-tRNA synthetases of rabbit liver in myocardial ischemia].
    Rodovicius H
    Medicina (Kaunas); 2003; 39(1):62-7. PubMed ID: 12576767
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reversed phase chromatography of isoaccepting tRNA's from healthy and crown gall tissues from Nicotiana tabacum.
    Cornelis P; Classen E; Claessen J
    Nucleic Acids Res; 1975 Jul; 2(7):1153-61. PubMed ID: 1153333
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Patterns of E. coli leucine tRNA isoacceptors following bacteriophage MS2 infection.
    Di Natale P; Eilat D
    Nucleic Acids Res; 1976 Apr; 3(4):917-30. PubMed ID: 775446
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Separation of isoacceptor cysteine transfer ribonucleic acids of bakers' yeasts.
    James HL; Morrison JC; Whybrew WD; Trass TC; Bucovaz ET
    Mol Cell Biochem; 1977 Mar; 15(1):15-7. PubMed ID: 325392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation.
    Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL
    Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acceptor activity, isoacceptor profiles and function in protein synthesis of transfer RNAs from regenerating skeletal muscle.
    Jones GH
    Biochim Biophys Acta; 1983 Dec; 741(3):333-40. PubMed ID: 6557823
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel tRNA aminoacylation mechanisms.
    Cathopoulis T; Chuawong P; Hendrickson TL
    Mol Biosyst; 2007 Jun; 3(6):408-18. PubMed ID: 17533454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Biological activity of tRNA, aminoacyl-tRNA-synthetases and composition of their high molecular weight complexes in regenerating rat liver].
    Iaremchuk AD; El'skaia AV
    Ukr Biokhim Zh (1978); 1983; 55(4):363-7. PubMed ID: 6623663
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Role of the anticodon in recognition of tRNA by aminoacyl-tRNA-synthetases].
    Kiselev LL
    Mol Biol (Mosk); 1983; 17(5):928-48. PubMed ID: 6355823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transfer RNATyr of melanoma tissues and cells: relevance to melanin synthesis?
    Kovacs SH; Rodi C; Lin VK; Ortwerth BJ; Agris PF
    Nucleic Acids Res; 1979; 6(6):2275-88. PubMed ID: 111227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases.
    Nureki O; Tateno M; Niimi T; Kohno T; Muramatsu T; Kanno H; Muto Y; Giege R; Yokoyama S
    Nucleic Acids Symp Ser; 1991; (25):165-6. PubMed ID: 1726806
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of a nitrobenzeneboronic acid substituted polyacrylamide and its use in purifying isoaccepting transfer ribonucleic acids.
    Johnson BJ
    Biochemistry; 1981 Oct; 20(21):6103-8. PubMed ID: 7030382
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Correlation between the presence of tRNA His GUG and the erythropoietic function in foetal sheep liver.
    Landin RM; Boisnard M; Petrissant G
    Nucleic Acids Res; 1979 Nov; 7(6):1635-48. PubMed ID: 503863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of isoaccepting tRNAs during the growth phase mitotic cycle of Physarum polycephalum.
    Melera PW; Momeni C; Rusch HP
    Biochemistry; 1974 Sep; 13(20):4139-42. PubMed ID: 4471998
    [No Abstract]   [Full Text] [Related]  

  • 56. The effects of hyperphenylalaninaemia on the concentrations of aminoacyl-transfer ribonucleic acid in vivo. A mechanism for the inhibition of neural protein synthesis by phenylalanine.
    Hughes JV; Johnson TC
    Biochem J; 1977 Mar; 162(3):527-37. PubMed ID: 869903
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aminoacyl-tRNA synthesis and translational quality control.
    Ling J; Reynolds N; Ibba M
    Annu Rev Microbiol; 2009; 63():61-78. PubMed ID: 19379069
    [TBL] [Abstract][Full Text] [Related]  

  • 58. III. The RNA component of aminoacyl-tRNA synthetase complexes isolated from mouse liver. Absence of amino acid accepting activity.
    Berg BH
    Biochim Biophys Acta; 1975 Dec; 414(2):93-8. PubMed ID: 1191714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations.
    Ryckelynck M; Giegé R; Frugier M
    Biochimie; 2005; 87(9-10):835-45. PubMed ID: 15925436
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biochemical changes induced by tumors at distant sites: altered transfer RNA profiles in livers of mice bearing plasmacytomas.
    Marini M; Muldoon WP; Mushinski JF
    Cancer Lett; 1979 Dec; 8(2):177-81. PubMed ID: 555874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.