BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

864 related articles for article (PubMed ID: 25534622)

  • 1. Clinical blockade of PD1 and LAG3--potential mechanisms of action.
    Nguyen LT; Ohashi PS
    Nat Rev Immunol; 2015 Jan; 15(1):45-56. PubMed ID: 25534622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.
    Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J
    Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LAG3 (CD223) as a cancer immunotherapy target.
    Andrews LP; Marciscano AE; Drake CG; Vignali DA
    Immunol Rev; 2017 Mar; 276(1):80-96. PubMed ID: 28258692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy.
    Qi Y; Chen L; Liu Q; Kong X; Fang Y; Wang J
    Front Immunol; 2020; 11():563258. PubMed ID: 33488573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LAG3 and PD1 Regulate CD8+ T Cell in Diffuse Large B-cell Lymphoma Patients.
    Liu Y; Guo X; Zhan L; Wang L; Wang X; Jiang M
    Comput Math Methods Med; 2021; 2021():4468140. PubMed ID: 34422089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model.
    Huang RY; Eppolito C; Lele S; Shrikant P; Matsuzaki J; Odunsi K
    Oncotarget; 2015 Sep; 6(29):27359-77. PubMed ID: 26318293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversing T-cell Dysfunction and Exhaustion in Cancer.
    Zarour HM
    Clin Cancer Res; 2016 Apr; 22(8):1856-64. PubMed ID: 27084739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy.
    Du H; Yi Z; Wang L; Li Z; Niu B; Ren G
    Int Immunopharmacol; 2020 Jan; 78():106113. PubMed ID: 31841754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association Between Expression Level of PD1 by Tumor-Infiltrating CD8
    Kim HD; Song GW; Park S; Jung MK; Kim MH; Kang HJ; Yoo C; Yi K; Kim KH; Eo S; Moon DB; Hong SM; Ju YS; Shin EC; Hwang S; Park SH
    Gastroenterology; 2018 Dec; 155(6):1936-1950.e17. PubMed ID: 30145359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding.
    Andrews LP; Somasundaram A; Moskovitz JM; Szymczak-Workman AL; Liu C; Cillo AR; Lin H; Normolle DP; Moynihan KD; Taniuchi I; Irvine DJ; Kirkwood JM; Lipson EJ; Ferris RL; Bruno TC; Workman CJ; Vignali DAA
    Sci Immunol; 2020 Jul; 5(49):. PubMed ID: 32680952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LAG3 (CD223) and autoimmunity: Emerging evidence.
    Hu S; Liu X; Li T; Li Z; Hu F
    J Autoimmun; 2020 Aug; 112():102504. PubMed ID: 32576412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of checkpoint blockade as a cancer therapy: what's here, what's next?
    Shin DS; Ribas A
    Curr Opin Immunol; 2015 Apr; 33():23-35. PubMed ID: 25621841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multi-specific V
    Edwards CJ; Sette A; Cox C; Di Fiore B; Wyre C; Sydoruk D; Yadin D; Hayes P; Stelter S; Bartlett PD; Zuazo M; Garcia-Granda MJ; Benedetti G; Fiaska S; Birkett NR; Teng Y; Enever C; Arasanz H; Bocanegra A; Chocarro L; Fernandez G; Vera R; Archer B; Osuch I; Lewandowska M; Surani YM; Kochan G; Escors D; Legg J; Pierce AJ
    Br J Cancer; 2022 May; 126(8):1168-1177. PubMed ID: 34969998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The diverse functions of the PD1 inhibitory pathway.
    Sharpe AH; Pauken KE
    Nat Rev Immunol; 2018 Mar; 18(3):153-167. PubMed ID: 28990585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia.
    Wierz M; Pierson S; Guyonnet L; Viry E; Lequeux A; Oudin A; Niclou SP; Ollert M; Berchem G; Janji B; Guérin C; Paggetti J; Moussay E
    Blood; 2018 Apr; 131(14):1617-1621. PubMed ID: 29439955
    [No Abstract]   [Full Text] [Related]  

  • 16. Overcoming Tumor-Induced Immune Suppression: From Relieving Inhibition to Providing Costimulation with T Cell Agonists.
    Emerson DA; Redmond WL
    BioDrugs; 2018 Jun; 32(3):221-231. PubMed ID: 29637478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shed it, and help-LAG3 cleavage drives conventional CD4
    Seidel L; Bengsch B
    Sci Immunol; 2020 Jul; 5(49):. PubMed ID: 32680953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of engineered cell-based assays mediating LAG3 and PD1 immune suppression enables potency measurement of blocking antibodies and assessment of signal transduction.
    Bhagwat B; Cherwinski H; Sathe M; Seghezzi W; McClanahan TK; de Waal Malefyt R; Willingham A
    J Immunol Methods; 2018 May; 456():7-14. PubMed ID: 29427592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The immune checkpoint receptor LAG3: Structure, function, and target for cancer immunotherapy.
    Mariuzza RA; Shahid S; Karade SS
    J Biol Chem; 2024 May; 300(5):107241. PubMed ID: 38556085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Check point inhibitors as therapies for infectious diseases.
    Cox MA; Nechanitzky R; Mak TW
    Curr Opin Immunol; 2017 Oct; 48():61-67. PubMed ID: 28865357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.