These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 25534626)

  • 1. Chemical comparison and acute toxicity of water accommodated fraction (WAF) of source and field collected Macondo oils from the Deepwater Horizon spill.
    Faksness LG; Altin D; Nordtug T; Daling PS; Hansen BH
    Mar Pollut Bull; 2015 Feb; 91(1):222-9. PubMed ID: 25534626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of artificially weathered Macondo oil with field samples and evidence that weathering does not increase environmental acute toxicity.
    Faksness LG; Altin D; Størseth TR; Nordtug T; Hansen BH
    Mar Environ Res; 2020 May; 157():104928. PubMed ID: 32275510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of oil and water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon oil spill natural resource damage assessment.
    Forth HP; Mitchelmore CL; Morris JM; Lipton J
    Environ Toxicol Chem; 2017 Jun; 36(6):1450-1459. PubMed ID: 27805278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute effects of non-weathered and weathered crude oil and dispersant associated with the Deepwater Horizon incident on the development of marine bivalve and echinoderm larvae.
    Stefansson ES; Langdon CJ; Pargee SM; Blunt SM; Gage SJ; Stubblefield WA
    Environ Toxicol Chem; 2016 Aug; 35(8):2016-28. PubMed ID: 26749266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple protocol for estimating the acute toxicity of unresolved polar compounds from field-weathered oils.
    Sørensen L; Størseth TR; Altin D; Nordtug T; Faksness LG; Hansen BH
    Toxicol Mech Methods; 2024 Mar; 34(3):245-255. PubMed ID: 38375852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of TLM derived models to estimate toxicity of weathered MC252 oil based on conventional chemical data and the potential impact of unresolved polar components.
    Faksness LG; Altin D; Hansen BH; Nordtug T
    Toxicol Mech Methods; 2024 Jun; 34(5):596-605. PubMed ID: 38375806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of dissolved and particulate phases of water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon natural resource damage assessment.
    Forth HP; Mitchelmore CL; Morris JM; Lay CR; Lipton J
    Environ Toxicol Chem; 2017 Jun; 36(6):1460-1472. PubMed ID: 28328044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marine Algal Sensitivity to Source and Weathered Oils.
    Softcheck KA
    Environ Toxicol Chem; 2021 Oct; 40(10):2742-2754. PubMed ID: 34423860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phototoxic potential of undispersed and dispersed fresh and weathered Macondo crude oils to Gulf of Mexico Marine Organisms.
    Finch BE; Marzooghi S; Di Toro DM; Stubblefield WA
    Environ Toxicol Chem; 2017 Oct; 36(10):2640-2650. PubMed ID: 28418080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-enhanced toxicity of two weathered Macondo crude oils to early life stages of the eastern oyster (Crassostrea virginica).
    Finch BE; Stefansson ES; Langdon CJ; Pargee SM; Blunt SM; Gage SJ; Stubblefield WA
    Mar Pollut Bull; 2016 Dec; 113(1-2):316-323. PubMed ID: 27726932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-collected crude oil, weathered oil and dispersants differentially affect the early life stages of freshwater and saltwater fishes.
    Philibert DA; Lyons D; Philibert C; Tierney KB
    Sci Total Environ; 2019 Jan; 647():1148-1157. PubMed ID: 30180323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in Chemical Composition and Copepod Toxicity during Petroleum Photo-oxidation.
    Katz SD; Chen H; Fields DM; Beirne EC; Keyes P; Drozd GT; Aeppli C
    Environ Sci Technol; 2022 May; 56(9):5552-5562. PubMed ID: 35435676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and environmental relevance of oil water preparations of fresh and weathered MC-252 Macondo oils used in toxicology testing.
    Sandoval K; Ding Y; Gardinali P
    Sci Total Environ; 2017 Jan; 576():118-128. PubMed ID: 27783930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic Toxicity of Unweathered and Weathered Macondo Oils to Mysid Shrimp (Americamysis bahia) and Inland Silversides (Menidia beryllina).
    Echols B; Smith A; Gardinali PR; Rand GM
    Arch Environ Contam Toxicol; 2016 Jul; 71(1):78-86. PubMed ID: 27090525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of ephyrae of a scyphozoan jellyfish, Aurelia aurita, in the aquatic toxicological assessment of Macondo oils from the Deepwater Horizon incident.
    Echols BS; Smith AJ; Gardinali PR; Rand GM
    Chemosphere; 2016 Feb; 144():1893-900. PubMed ID: 26547023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis.
    de Soysa TY; Ulrich A; Friedrich T; Pite D; Compton SL; Ok D; Bernardos RL; Downes GB; Hsieh S; Stein R; Lagdameo MC; Halvorsen K; Kesich LR; Barresi MJ
    BMC Biol; 2012 May; 10():40. PubMed ID: 22559716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phototoxicity Assessments of Field Sites in Barataria Bay, Louisiana, USA, and Heavily Weathered Macondo Crude Oil: 4 Years after the Deepwater Horizon Oil Spill.
    Finch BE; Stubblefield WA
    Environ Toxicol Chem; 2019 Aug; 38(8):1811-1819. PubMed ID: 31070808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weathering of field-collected floating and stranded Macondo oils during and shortly after the Deepwater Horizon oil spill.
    Stout SA; Payne JR; Emsbo-Mattingly SD; Baker G
    Mar Pollut Bull; 2016 Apr; 105(1):7-22. PubMed ID: 26936118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-enhanced toxicity of undispersed and dispersed weathered Macondo crude oil to Pacific (Crassostrea gigas) and eastern oyster (Crassostrea virginica) larvae.
    Finch BE; Stefansson ES; Langdon CJ; Pargee SM; Stubblefield WA
    Mar Pollut Bull; 2018 Aug; 133():828-834. PubMed ID: 30041383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of evaporative weathering and oil-sediment interaction on the fate and behavior of diluted bitumen in marine environments. Part 2. The water accommodated and particle-laden hydrocarbon species and toxicity of the aqueous phase.
    Yang Z; Hua Y; Mirnaghi F; Hollebone BP; Jackman P; Brown CE; Yang C; Shah K; Landriault M; Chan B
    Chemosphere; 2018 Jan; 191():145-155. PubMed ID: 29032259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.