BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 25534822)

  • 1. Preclinical evaluation of dasatinib alone and in combination with cabozantinib for the treatment of diffuse intrinsic pontine glioma.
    Truffaux N; Philippe C; Paulsson J; Andreiuolo F; Guerrini-Rousseau L; Cornilleau G; Le Dret L; Richon C; Lacroix L; Puget S; Geoerger B; Vassal G; Östman A; Grill J
    Neuro Oncol; 2015 Jul; 17(7):953-64. PubMed ID: 25534822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cabozantinib and dastinib exert anti-tumor activity in alveolar soft part sarcoma.
    Mukaihara K; Tanabe Y; Kubota D; Akaike K; Hayashi T; Mogushi K; Hosoya M; Sato S; Kobayashi E; Okubo T; Kim Y; Kohsaka S; Saito T; Kaneko K; Suehara Y
    PLoS One; 2017; 12(9):e0185321. PubMed ID: 28945796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent anti-tumor efficacy of palbociclib in treatment-naïve H3.3K27M-mutant diffuse intrinsic pontine glioma.
    Sun Y; Sun Y; Yan K; Li Z; Xu C; Geng Y; Pan C; Chen X; Zhang L; Xi Q
    EBioMedicine; 2019 May; 43():171-179. PubMed ID: 31060906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma.
    Sewing ACP; Lagerweij T; van Vuurden DG; Meel MH; Veringa SJE; Carcaboso AM; Gaillard PJ; Peter Vandertop W; Wesseling P; Noske D; Kaspers GJL; Hulleman E
    J Neurosurg Pediatr; 2017 May; 19(5):518-530. PubMed ID: 28291423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase 1 trial, pharmacokinetics, and pharmacodynamics of dasatinib combined with crizotinib in children with recurrent or progressive high-grade and diffuse intrinsic pontine glioma.
    Broniscer A; Jia S; Mandrell B; Hamideh D; Huang J; Onar-Thomas A; Gajjar A; Raimondi SC; Tatevossian RG; Stewart CF
    Pediatr Blood Cancer; 2018 Jul; 65(7):e27035. PubMed ID: 29512900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preclinical analysis of MTOR complex 1/2 inhibition in diffuse intrinsic pontine glioma.
    Flannery PC; DeSisto JA; Amani V; Venkataraman S; Lemma RT; Prince EW; Donson A; Moroze EE; Hoffman L; Levy JMM; Foreman N; Vibhakar R; Green AL
    Oncol Rep; 2018 Feb; 39(2):455-464. PubMed ID: 29207163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disrupting NOTCH Slows Diffuse Intrinsic Pontine Glioma Growth, Enhances Radiation Sensitivity, and Shows Combinatorial Efficacy With Bromodomain Inhibition.
    Taylor IC; Hütt-Cabezas M; Brandt WD; Kambhampati M; Nazarian J; Chang HT; Warren KE; Eberhart CG; Raabe EH
    J Neuropathol Exp Neurol; 2015 Aug; 74(8):778-90. PubMed ID: 26115193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MELK Inhibition in Diffuse Intrinsic Pontine Glioma.
    Meel MH; de Gooijer MC; Guillén Navarro M; Waranecki P; Breur M; Buil LCM; Wedekind LE; Twisk JWR; Koster J; Hashizume R; Raabe EH; Montero Carcaboso A; Bugiani M; van Tellingen O; van Vuurden DG; Kaspers GJL; Hulleman E
    Clin Cancer Res; 2018 Nov; 24(22):5645-5657. PubMed ID: 30061363
    [No Abstract]   [Full Text] [Related]  

  • 9. Preclinical evaluation of dasatinib, a potent Src kinase inhibitor, in melanoma cell lines.
    Eustace AJ; Crown J; Clynes M; O'Donovan N
    J Transl Med; 2008 Sep; 6():53. PubMed ID: 18823558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating Murine and Clinical Trials with Cabozantinib to Understand Roles of MET and VEGFR2 as Targets for Growth Inhibition of Prostate Cancer.
    Varkaris A; Corn PG; Parikh NU; Efstathiou E; Song JH; Lee YC; Aparicio A; Hoang AG; Gaur S; Thorpe L; Maity SN; Bar Eli M; Czerniak BA; Shao Y; Alauddin M; Lin SH; Logothetis CJ; Gallick GE
    Clin Cancer Res; 2016 Jan; 22(1):107-21. PubMed ID: 26272062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of neuroblastoma to the novel kinase inhibitor cabozantinib is mediated by ERK inhibition.
    Zhang L; Scorsone K; Woodfield SE; Zage PE
    Cancer Chemother Pharmacol; 2015 Nov; 76(5):977-87. PubMed ID: 26407819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ALK2 inhibitors display beneficial effects in preclinical models of
    Carvalho D; Taylor KR; Olaciregui NG; Molinari V; Clarke M; Mackay A; Ruddle R; Henley A; Valenti M; Hayes A; Brandon AH; Eccles SA; Raynaud F; Boudhar A; Monje M; Popov S; Moore AS; Mora J; Cruz O; Vinci M; Brennan PE; Bullock AN; Carcaboso AM; Jones C
    Commun Biol; 2019; 2():156. PubMed ID: 31098401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma.
    Nagaraja S; Vitanza NA; Woo PJ; Taylor KR; Liu F; Zhang L; Li M; Meng W; Ponnuswami A; Sun W; Ma J; Hulleman E; Swigut T; Wysocka J; Tang Y; Monje M
    Cancer Cell; 2017 May; 31(5):635-652.e6. PubMed ID: 28434841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmentation of the anticancer activity of CYT997 in human prostate cancer by inhibiting Src activity.
    Teng Y; Cai Y; Pi W; Gao L; Shay C
    J Hematol Oncol; 2017 Jun; 10(1):118. PubMed ID: 28606127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ABCG2 and ABCB1 Limit the Efficacy of Dasatinib in a PDGF-B-Driven Brainstem Glioma Model.
    Mittapalli RK; Chung AH; Parrish KE; Crabtree D; Halvorson KG; Hu G; Elmquist WF; Becher OJ
    Mol Cancer Ther; 2016 May; 15(5):819-29. PubMed ID: 26883271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Novel RAS Signaling Therapeutic Vulnerabilities in Diffuse Intrinsic Pontine Gliomas.
    Koncar RF; Dey BR; Stanton AJ; Agrawal N; Wassell ML; McCarl LH; Locke AL; Sanders L; Morozova-Vaske O; Myers MI; Hamilton RL; Carcaboso AM; Kohanbash G; Hu B; Amankulor NM; Felker J; Kambhampati M; Nazarian J; Becher OJ; James CD; Hashizume R; Broniscer A; Pollack IF; Agnihotri S
    Cancer Res; 2019 Aug; 79(16):4026-4041. PubMed ID: 31201162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic activity of agents targeting growth factor receptors, CDKs and downstream signaling molecules in a panel of pancreatic cancer cell lines and the identification of antagonistic combinations: Implications for future clinical trials in pancreatic cancer.
    Khan T; Seddon AM; Dalgleish AG; Khelwatty S; Ioannou N; Mudan S; Modjtahedi H
    Oncol Rep; 2020 Dec; 44(6):2581-2594. PubMed ID: 33125153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cabozantinib Exhibits Potent Antitumor Activity in Colorectal Cancer Patient-Derived Tumor Xenograft Models via Autophagy and Signaling Mechanisms.
    Scott AJ; Arcaroli JJ; Bagby SM; Yahn R; Huber KM; Serkova NJ; Nguyen A; Kim J; Thorburn A; Vogel J; Quackenbush KS; Capasso A; Schreiber A; Blatchford P; Klauck PJ; Pitts TM; Eckhardt SG; Messersmith WA
    Mol Cancer Ther; 2018 Oct; 17(10):2112-2122. PubMed ID: 30026382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-throughput in vitro drug screen in a genetically engineered mouse model of diffuse intrinsic pontine glioma identifies BMS-754807 as a promising therapeutic agent.
    Halvorson KG; Barton KL; Schroeder K; Misuraca KL; Hoeman C; Chung A; Crabtree DM; Cordero FJ; Singh R; Spasojevic I; Berlow N; Pal R; Becher OJ
    PLoS One; 2015; 10(3):e0118926. PubMed ID: 25748921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of RAF/MEK or PI3K synergizes cytotoxicity of receptor tyrosine kinase inhibitors in glioma tumor-initiating cells.
    Shingu T; Holmes L; Henry V; Wang Q; Latha K; Gururaj AE; Gibson LA; Doucette T; Lang FF; Rao G; Yuan L; Sulman EP; Farrell NP; Priebe W; Hess KR; Wang YA; Hu J; Bögler O
    J Transl Med; 2016 Feb; 14():46. PubMed ID: 26861698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.