BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25534881)

  • 1. SILAC-iPAC: a quantitative method for distinguishing genuine from non-specific components of protein complexes by parallel affinity capture.
    Rees JS; Lilley KS; Jackson AP
    J Proteomics; 2015 Feb; 115():143-56. PubMed ID: 25534881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chicken B-cell line DT40 proteome, beadome and interactomes.
    Rees JS; Lilley KS; Jackson AP
    Data Brief; 2015 Jun; 3():29-33. PubMed ID: 26217713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Protein Interaction Partners in Bacteria Using Affinity Purification and SILAC Quantitative Proteomics.
    Kopeckova M; Link M; Pavkova I
    Methods Mol Biol; 2023; 2603():31-42. PubMed ID: 36370268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach.
    Tsai BP; Wang X; Huang L; Waterman ML
    Mol Cell Proteomics; 2011 Apr; 10(4):M110.007385. PubMed ID: 21285413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying SILAC for the differential analysis of protein complexes.
    Boldt K; Gloeckner CJ; Texier Y; von Zweydorf F; Ueffing M
    Methods Mol Biol; 2014; 1188():177-90. PubMed ID: 25059612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo analysis of proteomes and interactomes using Parallel Affinity Capture (iPAC) coupled to mass spectrometry.
    Rees JS; Lowe N; Armean IM; Roote J; Johnson G; Drummond E; Spriggs H; Ryder E; Russell S; St Johnston D; Lilley KS
    Mol Cell Proteomics; 2011 Jun; 10(6):M110.002386. PubMed ID: 21447707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the SILAC (stable isotope labelling with amino acids in cell culture) technique in quantitative comparisons for tissue proteome expression.
    Xu Y; Liang S; Shen G; Xu X; Liu Q; Xu Z; Gong F; Tang M; Wei Y
    Biotechnol Appl Biochem; 2009 Jul; 54(1):11-20. PubMed ID: 19250064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanodiscs and SILAC-based mass spectrometry to identify a membrane protein interactome.
    Zhang XX; Chan CS; Bao H; Fang Y; Foster LJ; Duong F
    J Proteome Res; 2012 Feb; 11(2):1454-9. PubMed ID: 22129326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the STAT3 interactome using in-situ biotinylation and SILAC.
    Blumert C; Kalkhof S; Brocke-Heidrich K; Kohajda T; von Bergen M; Horn F
    J Proteomics; 2013 Dec; 94():370-86. PubMed ID: 24013128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay.
    Li XW; Rees JS; Xue P; Zhang H; Hamaia SW; Sanderson B; Funk PE; Farndale RW; Lilley KS; Perrett S; Jackson AP
    J Biol Chem; 2014 May; 289(21):14434-47. PubMed ID: 24706754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli.
    Babu M; Butland G; Pogoutse O; Li J; Greenblatt JF; Emili A
    Methods Mol Biol; 2009; 564():373-400. PubMed ID: 19544035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional proteomics: protein-protein interactions in vivo.
    Monti M; Cozzolino M; Cozzolino F; Tedesco R; Pucci P
    Ital J Biochem; 2007 Dec; 56(4):310-4. PubMed ID: 19192633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the integrin-linked kinase interactome using SILAC.
    Dobreva I; Fielding A; Foster LJ; Dedhar S
    J Proteome Res; 2008 Apr; 7(4):1740-9. PubMed ID: 18327965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic Analysis of the β-Arrestin Interactomes.
    Zhao Y; Xiao K
    Methods Mol Biol; 2019; 1957():217-232. PubMed ID: 30919357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying novel protein interactions: Proteomic methods, optimisation approaches and data analysis pipelines.
    Carneiro DG; Clarke T; Davies CC; Bailey D
    Methods; 2016 Feb; 95():46-54. PubMed ID: 26320829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SILAC labeling of yeast for the study of membrane protein complexes.
    Oeljeklaus S; Schummer A; Suppanz I; Warscheid B
    Methods Mol Biol; 2014; 1188():23-46. PubMed ID: 25059602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and quantification of newly synthesized proteins translationally regulated by YB-1 using a novel Click-SILAC approach.
    Somasekharan SP; Stoynov N; Rotblat B; Leprivier G; Galpin JD; Ahern CA; Foster LJ; Sorensen PH
    J Proteomics; 2012 Dec; 77():e1-10. PubMed ID: 22967496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the protein complex associated with 14-3-3 epsilon by a deuterated-leucine labeling quantitative proteomics strategy.
    Liang S; Yu Y; Yang P; Gu S; Xue Y; Chen X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Mar; 877(7):627-34. PubMed ID: 19201265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of protein interaction partners in mammalian cells using SILAC-immunoprecipitation quantitative proteomics.
    Emmott E; Goodfellow I
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25046639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics.
    Hoedt E; Zhang G; Neubert TA
    Adv Exp Med Biol; 2014; 806():93-106. PubMed ID: 24952180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.