These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 25534958)
1. PredHydroxy: computational prediction of protein hydroxylation site locations based on the primary structure. Shi SP; Chen X; Xu HD; Qiu JD Mol Biosyst; 2015 Mar; 11(3):819-25. PubMed ID: 25534958 [TBL] [Abstract][Full Text] [Related]
2. OH-PRED: prediction of protein hydroxylation sites by incorporating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties of amino acids. Jia CZ; He WY; Yao YH J Biomol Struct Dyn; 2017 Mar; 35(4):829-835. PubMed ID: 26957000 [TBL] [Abstract][Full Text] [Related]
3. PGluS: prediction of protein S-glutathionylation sites with multiple features and analysis. Zhao X; Ning Q; Ai M; Chai H; Yin M Mol Biosyst; 2015 Mar; 11(3):923-9. PubMed ID: 25599514 [TBL] [Abstract][Full Text] [Related]
4. RF-Hydroxysite: a random forest based predictor for hydroxylation sites. Ismail HD; Newman RH; Kc DB Mol Biosyst; 2016 Jul; 12(8):2427-35. PubMed ID: 27292874 [TBL] [Abstract][Full Text] [Related]
5. Prediction and analysis of protein hydroxyproline and hydroxylysine. Hu LL; Niu S; Huang T; Wang K; Shi XH; Cai YD PLoS One; 2010 Dec; 5(12):e15917. PubMed ID: 21209839 [TBL] [Abstract][Full Text] [Related]
6. HydPred: a novel method for the identification of protein hydroxylation sites that reveals new insights into human inherited disease. Li S; Lu J; Li J; Chen X; Yao X; Xi L Mol Biosyst; 2016 Feb; 12(2):490-8. PubMed ID: 26661679 [TBL] [Abstract][Full Text] [Related]
7. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121 [TBL] [Abstract][Full Text] [Related]
8. Predicting sub-cellular localization of tRNA synthetases from their primary structures. Panwar B; Raghava GP Amino Acids; 2012 May; 42(5):1703-13. PubMed ID: 21400228 [TBL] [Abstract][Full Text] [Related]
9. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition. He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944 [TBL] [Abstract][Full Text] [Related]
10. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC. Ju Z; He JJ J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688 [TBL] [Abstract][Full Text] [Related]
11. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information. Kumar M; Gromiha MM; Raghava GP J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174 [TBL] [Abstract][Full Text] [Related]
12. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related]
13. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature. Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114 [TBL] [Abstract][Full Text] [Related]
14. MSLVP: prediction of multiple subcellular localization of viral proteins using a support vector machine. Thakur A; Rajput A; Kumar M Mol Biosyst; 2016 Jul; 12(8):2572-86. PubMed ID: 27272007 [TBL] [Abstract][Full Text] [Related]
15. A method to distinguish between lysine acetylation and lysine methylation from protein sequences. Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP J Theor Biol; 2012 Oct; 310():223-30. PubMed ID: 22796329 [TBL] [Abstract][Full Text] [Related]
16. Prediction of pupylation sites using the composition of k-spaced amino acid pairs. Tung CW J Theor Biol; 2013 Nov; 336():11-7. PubMed ID: 23871866 [TBL] [Abstract][Full Text] [Related]
17. MOWGLI: prediction of protein-MannOse interacting residues With ensemble classifiers usinG evoLutionary Information. Pai PP; Mondal S J Biomol Struct Dyn; 2016 Oct; 34(10):2069-83. PubMed ID: 26457920 [TBL] [Abstract][Full Text] [Related]
18. Identification of RNA-binding sites in proteins by integrating various sequence information. Wang CC; Fang Y; Xiao J; Li M Amino Acids; 2011 Jan; 40(1):239-48. PubMed ID: 20549269 [TBL] [Abstract][Full Text] [Related]
19. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Xu Y; Wen X; Shao XJ; Deng NY; Chou KC Int J Mol Sci; 2014 May; 15(5):7594-610. PubMed ID: 24857907 [TBL] [Abstract][Full Text] [Related]
20. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites. Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]