These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25535706)

  • 1. Biotransformation of arsenic by bacterial strains mediated by oxido-reductase enzyme system.
    Vishnoi N; Singh DP
    Cell Mol Biol (Noisy-le-grand); 2014 Dec; 60(5):7-14. PubMed ID: 25535706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review.
    Kumari N; Jagadevan S
    Chemosphere; 2016 Nov; 163():400-412. PubMed ID: 27565307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater.
    Chang JS; Yoon IH; Kim KW
    Chemosphere; 2018 Jan; 191():729-737. PubMed ID: 29080535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and diversity of arsenic resistant bacteria in an old tin mine area of Thailand.
    Jareonmit P; Sajjaphan K; Sadowsky MJ
    J Microbiol Biotechnol; 2010 Jan; 20(1):169-78. PubMed ID: 20134249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Arsenic Biotransformation by a Typical Bryophyte Physcomitrella patens.
    Yin X; Wang L; Liu Y; Jiang T; Gao J
    Bull Environ Contam Toxicol; 2017 Feb; 98(2):251-256. PubMed ID: 27933331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of plant growth promoting attributes and arsenic remediation efficacy of bacteria isolated from agricultural soils of Chhattisgarh.
    Pandey N; Manjunath K; Sahu K
    Arch Microbiol; 2020 Apr; 202(3):567-578. PubMed ID: 31741012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Roseomonas and Nocardioides spp. for arsenic transformation.
    Bagade AV; Bachate SP; Dholakia BB; Giri AP; Kodam KM
    J Hazard Mater; 2016 Nov; 318():742-750. PubMed ID: 27498193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenics as bioenergetic substrates.
    van Lis R; Nitschke W; Duval S; Schoepp-Cothenet B
    Biochim Biophys Acta; 2013 Feb; 1827(2):176-88. PubMed ID: 22982475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene.
    Bahar MM; Megharaj M; Naidu R
    J Hazard Mater; 2013 Nov; 262():997-1003. PubMed ID: 23290483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of siderophore producing arsenic-resistant Staphylococcus sp. strain TA6 isolated from contaminated groundwater of Jorhat, Assam and its possible role in arsenic geocycle.
    Das S; Barooah M
    BMC Microbiol; 2018 Sep; 18(1):104. PubMed ID: 30180796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India.
    Sarkar A; Kazy SK; Sar P
    Ecotoxicology; 2013 Mar; 22(2):363-76. PubMed ID: 23238642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application.
    Nookongbut P; Kantachote D; Krishnan K; Megharaj M
    J Basic Microbiol; 2017 Apr; 57(4):316-324. PubMed ID: 28054716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.
    Inskeep WP; Macur RE; Hamamura N; Warelow TP; Ward SA; Santini JM
    Environ Microbiol; 2007 Apr; 9(4):934-43. PubMed ID: 17359265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations.
    Glasser NR; Oyala PH; Osborne TH; Santini JM; Newman DK
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8614-E8623. PubMed ID: 30104376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata.
    Huang A; Teplitski M; Rathinasabapathi B; Ma L
    Can J Microbiol; 2010 Mar; 56(3):236-46. PubMed ID: 20453910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China.
    Zhang Z; Yin N; Cai X; Wang Z; Cui Y
    J Environ Sci (China); 2016 Sep; 47():165-173. PubMed ID: 27593283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenate reductases in prokaryotes and eukaryotes.
    Mukhopadhyay R; Rosen BP
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):745-8. PubMed ID: 12426124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants.
    Chao DY; Chen Y; Chen J; Shi S; Chen Z; Wang C; Danku JM; Zhao FJ; Salt DE
    PLoS Biol; 2014 Dec; 12(12):e1002009. PubMed ID: 25464340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of arsenic oxidation potential of Microvirga indica S-MI1b sp. nov. in heavy metal polluted environment.
    Tapase SR; Kodam KM
    Chemosphere; 2018 Mar; 195():1-10. PubMed ID: 29241075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic extraction from solid phase using a dissimilatory arsenate-reducing bacterium.
    Yamamura S; Yamamoto N; Ike M; Fujita M
    J Biosci Bioeng; 2005 Aug; 100(2):219-22. PubMed ID: 16198269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.