BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25535848)

  • 1. Solvent driving force ensures fast formation of a persistent and well-separated radical pair in plant cryptochrome.
    Lüdemann G; Solov'yov IA; Kubař T; Elstner M
    J Am Chem Soc; 2015 Jan; 137(3):1147-56. PubMed ID: 25535848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactivation of cryptochromes from Drosophila melanogaster and Sylvia borin: insight into the chemical compass mechanism by computational investigation.
    Hong G; Pachter R
    J Phys Chem B; 2015 Mar; 119(10):3883-92. PubMed ID: 25710635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decrypting cryptochrome: revealing the molecular identity of the photoactivation reaction.
    Solov'yov IA; Domratcheva T; Moughal Shahi AR; Schulten K
    J Am Chem Soc; 2012 Oct; 134(43):18046-52. PubMed ID: 23009093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer and spin dynamics of the radical-pair in the cryptochrome from Chlamydomonas reinhardtii by computational analysis.
    Hong G; Pachter R; Essen LO; Ritz T
    J Chem Phys; 2020 Feb; 152(6):065101. PubMed ID: 32061221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance.
    Solov'yov IA; Domratcheva T; Schulten K
    Sci Rep; 2014 Jan; 4():3845. PubMed ID: 24457842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear polarization effects in cryptochrome-based magnetoreception.
    Wong SY; Solov'yov IA; Hore PJ; Kattnig DR
    J Chem Phys; 2021 Jan; 154(3):035102. PubMed ID: 33499614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron spin relaxation in cryptochrome-based magnetoreception.
    Kattnig DR; Solov'yov IA; Hore PJ
    Phys Chem Chem Phys; 2016 May; 18(18):12443-56. PubMed ID: 27020113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption Spectra of FAD Embedded in Cryptochromes.
    Nielsen C; Nørby MS; Kongsted J; Solov'yov IA
    J Phys Chem Lett; 2018 Jul; 9(13):3618-3623. PubMed ID: 29905481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic interactions in the radical pair model of magnetic field sense in CRY-1 protein of Arabidopsis thaliana.
    Izmaylov AF; Tully JC; Frisch MJ
    J Phys Chem A; 2009 Nov; 113(44):12276-84. PubMed ID: 19863135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative radical pairs for cryptochrome-based magnetoreception.
    Lee AA; Lau JC; Hogben HJ; Biskup T; Kattnig DR; Hore PJ
    J R Soc Interface; 2014 Jun; 11(95):20131063. PubMed ID: 24671932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quantum needle of the avian magnetic compass.
    Hiscock HG; Worster S; Kattnig DR; Steers C; Jin Y; Manolopoulos DE; Mouritsen H; Hore PJ
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4634-9. PubMed ID: 27044102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Insights into Variable Electron Transfer in Amphibian Cryptochrome.
    Sjulstok E; Lüdemann G; Kubař T; Elstner M; Solov'yov IA
    Biophys J; 2018 Jun; 114(11):2563-2572. PubMed ID: 29874607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viability of superoxide-containing radical pairs as magnetoreceptors.
    Player TC; Hore PJ
    J Chem Phys; 2019 Dec; 151(22):225101. PubMed ID: 31837685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Radical-Radical Distances in Light-Active Proteins and Their Implication for Biological Magnetoreception.
    Nohr D; Paulus B; Rodriguez R; Okafuji A; Bittl R; Schleicher E; Weber S
    Angew Chem Int Ed Engl; 2017 Jul; 56(29):8550-8554. PubMed ID: 28627073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of Polarizable Embedding for Absorption Spectrum Calculations of
    Frederiksen A; Gerhards L; Reinholdt P; Kongsted J; Solov'yov IA
    J Phys Chem B; 2024 Jul; 128(26):6283-6290. PubMed ID: 38913544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of light-induced spin-correlated radical pairs in cryptochrome.
    Weber S; Biskup T; Okafuji A; Marino AR; Berthold T; Link G; Hitomi K; Getzoff ED; Schleicher E; Norris JR
    J Phys Chem B; 2010 Nov; 114(45):14745-54. PubMed ID: 20684534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive fluorescence-based detection of magnetic field effects in photoreactions of flavins.
    Evans EW; Li J; Storey JG; Maeda K; Henbest KB; Dodson CA; Hore PJ; Mackenzie SR; Timmel CR
    Phys Chem Chem Phys; 2015 Jul; 17(28):18456-63. PubMed ID: 26108474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascorbic acid may not be involved in cryptochrome-based magnetoreception.
    Nielsen C; Kattnig DR; Sjulstok E; Hore PJ; Solov'yov IA
    J R Soc Interface; 2017 Dec; 14(137):. PubMed ID: 29263128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum coherence and sensitivity of avian magnetoreception.
    Bandyopadhyay JN; Paterek T; Kaszlikowski D
    Phys Rev Lett; 2012 Sep; 109(11):110502. PubMed ID: 23005606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids.
    Nohr D; Franz S; Rodriguez R; Paulus B; Essen LO; Weber S; Schleicher E
    Biophys J; 2016 Jul; 111(2):301-311. PubMed ID: 27463133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.