These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25535848)

  • 21. Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception.
    Müller P; Ahmad M
    J Biol Chem; 2011 Jun; 286(24):21033-40. PubMed ID: 21467031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum-mechanical insights into the anisotropic response of the cryptochrome radical pair to a weak magnetic field.
    Bezchastnov V; Domratcheva T
    J Chem Phys; 2023 Jan; 158(3):034303. PubMed ID: 36681637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation of magnetic field effects on transient fluorescence spectra of cryptochrome 1 from homing pigeons.
    Du XL; Wang J; Pan WS; Liu QJ; Wang XJ; Wu WJ
    Photochem Photobiol; 2014; 90(5):989-96. PubMed ID: 24689535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic field effects in Arabidopsis thaliana cryptochrome-1.
    Solov'yov IA; Chandler DE; Schulten K
    Biophys J; 2007 Apr; 92(8):2711-26. PubMed ID: 17259272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetically Sensitive Radical Photochemistry of Non-natural Flavoproteins.
    Zollitsch TM; Jarocha LE; Bialas C; Henbest KB; Kodali G; Dutton PL; Moser CC; Timmel CR; Hore PJ; Mackenzie SR
    J Am Chem Soc; 2018 Jul; 140(28):8705-8713. PubMed ID: 29940116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Dynamical Degrees of Freedom on Magnetic Compass Sensitivity: A Comparison of Plant and Avian Cryptochromes.
    Grüning G; Wong SY; Gerhards L; Schuhmann F; Kattnig DR; Hore PJ; Solov'yov IA
    J Am Chem Soc; 2022 Dec; 144(50):22902-22914. PubMed ID: 36459632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass.
    Efimova O; Hore PJ
    Biophys J; 2008 Mar; 94(5):1565-74. PubMed ID: 17981903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception.
    Worster S; Kattnig DR; Hore PJ
    J Chem Phys; 2016 Jul; 145(3):035104. PubMed ID: 27448908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical amplification of magnetic field effects relevant to avian magnetoreception.
    Kattnig DR; Evans EW; Déjean V; Dodson CA; Wallace MI; Mackenzie SR; Timmel CR; Hore PJ
    Nat Chem; 2016 Apr; 8(4):384-91. PubMed ID: 27001735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Radical-Pair Mechanism of Magnetoreception.
    Hore PJ; Mouritsen H
    Annu Rev Biophys; 2016 Jul; 45():299-344. PubMed ID: 27216936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Angular Precision of Radical Pair Compass Magnetoreceptors.
    Ren Y; Hiscock HG; Hore PJ
    Biophys J; 2021 Feb; 120(3):547-555. PubMed ID: 33421412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception.
    Dodson CA; Hore PJ; Wallace MI
    Trends Biochem Sci; 2013 Sep; 38(9):435-46. PubMed ID: 23938034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
    Langenbacher T; Immeln D; Dick B; Kottke T
    J Am Chem Soc; 2009 Oct; 131(40):14274-80. PubMed ID: 19754110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Millitesla magnetic field effects on the photocycle of an animal cryptochrome.
    Sheppard DM; Li J; Henbest KB; Neil SR; Maeda K; Storey J; Schleicher E; Biskup T; Rodriguez R; Weber S; Hore PJ; Timmel CR; Mackenzie SR
    Sci Rep; 2017 Feb; 7():42228. PubMed ID: 28176875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs.
    Liedvogel M; Maeda K; Henbest K; Schleicher E; Simon T; Timmel CR; Hore PJ; Mouritsen H
    PLoS One; 2007 Oct; 2(10):e1106. PubMed ID: 17971869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin.
    Hammad M; Albaqami M; Pooam M; Kernevez E; Witczak J; Ritz T; Martino C; Ahmad M
    Photochem Photobiol Sci; 2020 Mar; 19(3):341-352. PubMed ID: 32065192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins.
    Immeln D; Pokorny R; Herman E; Moldt J; Batschauer A; Kottke T
    J Phys Chem B; 2010 Dec; 114(51):17155-61. PubMed ID: 21128641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome.
    Nießner C; Winklhofer M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jul; 203(6-7):499-507. PubMed ID: 28612234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light.
    Hiscock HG; Hiscock TW; Kattnig DR; Scrivener T; Lewis AM; Manolopoulos DE; Hore PJ
    Q Rev Biophys; 2019 Oct; 52():e9. PubMed ID: 31637984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle.
    Nießner C; Denzau S; Peichl L; Wiltschko W; Wiltschko R
    J Exp Biol; 2014 Dec; 217(Pt 23):4221-4. PubMed ID: 25472972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.