These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
581 related articles for article (PubMed ID: 25536017)
1. Improving the conductivity of PEDOT:PSS hole transport layer in polymer solar cells via copper(II) bromide salt doping. Zhao Z; Wu Q; Xia F; Chen X; Liu Y; Zhang W; Zhu J; Dai S; Yang S ACS Appl Mater Interfaces; 2015 Jan; 7(3):1439-48. PubMed ID: 25536017 [TBL] [Abstract][Full Text] [Related]
2. Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT:PSS as the hole transport layer. Meng Y; Hu Z; Ai N; Jiang Z; Wang J; Peng J; Cao Y ACS Appl Mater Interfaces; 2014 Apr; 6(7):5122-9. PubMed ID: 24611433 [TBL] [Abstract][Full Text] [Related]
3. Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer. Yu JC; Jang JI; Lee BR; Lee GW; Han JT; Song MH ACS Appl Mater Interfaces; 2014 Feb; 6(3):2067-73. PubMed ID: 24433032 [TBL] [Abstract][Full Text] [Related]
5. The effect of methanol treatment on the performance of polymer solar cells. Zhang K; Hu Z; Duan C; Ying L; Huang F; Cao Y Nanotechnology; 2013 Dec; 24(48):484003. PubMed ID: 24196342 [TBL] [Abstract][Full Text] [Related]
6. Improving the efficiency of inverted polymer solar cells by introducing inorganic dopants. Liu C; Li J; Zhang X; He Y; Li Z; Li H; Guo W; Shen L; Ruan S Phys Chem Chem Phys; 2015 Mar; 17(12):7960-5. PubMed ID: 25721798 [TBL] [Abstract][Full Text] [Related]
7. Enhanced fill factor of tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer and optimized interlayer. Wang DH; Kyaw AK; Park JH ChemSusChem; 2015 Jan; 8(2):331-6. PubMed ID: 25404201 [TBL] [Abstract][Full Text] [Related]
8. A Bromo-Functionalized Conjugated Polymer as a Cross-Linkable Anode Interlayer of Polymer Solar Cells. Meng B; Xie Z; Liu J; Wang L Chem Asian J; 2016 Apr; 11(8):1218-22. PubMed ID: 26650517 [TBL] [Abstract][Full Text] [Related]
9. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer. Rafique S; Abdullah SM; Shahid MM; Ansari MO; Sulaiman K Sci Rep; 2017 Jan; 7():39555. PubMed ID: 28084304 [TBL] [Abstract][Full Text] [Related]
10. Modification of the active layer/PEDOT:PSS interface by solvent additives resulting in improvement of the performance of organic solar cells. Synooka O; Kretschmer F; Hager MD; Himmerlich M; Krischok S; Gehrig D; Laquai F; Schubert US; Gobsch G; Hoppe H ACS Appl Mater Interfaces; 2014 Jul; 6(14):11068-81. PubMed ID: 24979240 [TBL] [Abstract][Full Text] [Related]
11. Noncovalent phosphorylation of graphene oxide with improved hole transport in high-efficiency polymer solar cells. Chen X; Liu Q; Zhang M; Ju H; Zhu J; Qiao Q; Wang M; Yang S Nanoscale; 2018 Aug; 10(31):14840-14846. PubMed ID: 30051897 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Performance of Polymeric Bulk Heterojunction Solar Cells via Molecular Doping with TFSA. Xiao Y; Wang H; Zhou S; Yan K; Guan Z; Tsang SW; Xu J ACS Appl Mater Interfaces; 2015 Jun; 7(24):13415-21. PubMed ID: 26039377 [TBL] [Abstract][Full Text] [Related]
13. Recent Progress of Inverted Perovskite Solar Cells with a Modified PEDOT:PSS Hole Transport Layer. Han W; Ren G; Liu J; Li Z; Bao H; Liu C; Guo W ACS Appl Mater Interfaces; 2020 Nov; 12(44):49297-49322. PubMed ID: 33089987 [TBL] [Abstract][Full Text] [Related]
14. Nonreduction-Active Hole-Transporting Layers Enhancing Open-Circuit Voltage and Efficiency of Planar Perovskite Solar Cells. Liu T; Jiang F; Qin F; Meng W; Jiang Y; Xiong S; Tong J; Li Z; Liu Y; Zhou Y ACS Appl Mater Interfaces; 2016 Dec; 8(49):33899-33906. PubMed ID: 27960360 [TBL] [Abstract][Full Text] [Related]
15. Optical-Electrical-Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells. Ma S; Qiao W; Cheng T; Zhang B; Yao J; Alsaedi A; Hayat T; Ding Y; Tan Z; Dai S ACS Appl Mater Interfaces; 2018 Jan; 10(4):3902-3911. PubMed ID: 29308652 [TBL] [Abstract][Full Text] [Related]
16. Ultrathin ammonium heptamolybdate films as efficient room-temperature hole transport layers for organic solar cells. Qiu W; Hadipour A; Müller R; Conings B; Boyen HG; Heremans P; Froyen L ACS Appl Mater Interfaces; 2014 Sep; 6(18):16335-43. PubMed ID: 25167921 [TBL] [Abstract][Full Text] [Related]
17. Solution Processed Organic/Silicon Nanowires Hybrid Heterojunction Solar Cells Using Organosilane Incorporated Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as Hole Transport Layers. Shen R; Sun Z; Shi Y; Zhou Y; Guo W; Zhou Y; Yan H; Liu F ACS Nano; 2021 Apr; 15(4):6296-6304. PubMed ID: 33661604 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the performance of polymer solar cells using solution-processed copper doped nickel oxide nanoparticles as hole transport layer. Huang S; Wang Y; Shen S; Tang Y; Yu A; Kang B; Silva SRP; Lu G J Colloid Interface Sci; 2019 Feb; 535():308-317. PubMed ID: 30316117 [TBL] [Abstract][Full Text] [Related]
19. Enhanced performance of inverted polymer solar cells by using poly(ethylene oxide)-modified ZnO as an electron transport layer. Shao S; Zheng K; Pullerits T; Zhang F ACS Appl Mater Interfaces; 2013 Jan; 5(2):380-5. PubMed ID: 23272946 [TBL] [Abstract][Full Text] [Related]
20. Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells. Wang Y; Luo Q; Wu N; Wang Q; Zhu H; Chen L; Li YQ; Luo L; Ma CQ ACS Appl Mater Interfaces; 2015 Apr; 7(13):7170-9. PubMed ID: 25794176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]