BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25536054)

  • 1. Role of calcitonin gene-related peptide in functional adaptation of the skeleton.
    Sample SJ; Heaton CM; Behan M; Bleedorn JA; Racette MA; Hao Z; Muir P
    PLoS One; 2014; 9(12):e113959. PubMed ID: 25536054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading.
    Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S
    Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of calcitonin gene-related peptide in bone repair after cyclic fatigue loading.
    Sample SJ; Hao Z; Wilson AP; Muir P
    PLoS One; 2011; 6(6):e20386. PubMed ID: 21694766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional adaptation in female rats: the role of estrogen signaling.
    Sample SJ; Racette MA; Hao Z; Thomas CF; Behan M; Muir P
    PLoS One; 2012; 7(9):e43215. PubMed ID: 22984413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones.
    Sample SJ; Behan M; Smith L; Oldenhoff WE; Markel MD; Kalscheur VL; Hao Z; Miletic V; Muir P
    J Bone Miner Res; 2008 Sep; 23(9):1372-81. PubMed ID: 18410233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta.
    Saxon LK; Robling AG; Castillo AB; Mohan S; Turner CH
    Am J Physiol Endocrinol Metab; 2007 Aug; 293(2):E484-91. PubMed ID: 17535856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site specific bone adaptation response to mechanical loading.
    Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP
    J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene.
    Hoff AO; Catala-Lehnen P; Thomas PM; Priemel M; Rueger JM; Nasonkin I; Bradley A; Hughes MR; Ordonez N; Cote GJ; Amling M; Gagel RF
    J Clin Invest; 2002 Dec; 110(12):1849-57. PubMed ID: 12488435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.
    Norman SC; Wagner DW; Beaupre GS; Castillo AB
    J Biomech; 2015 Jan; 48(1):53-8. PubMed ID: 25443882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rest insertion combined with high-frequency loading enhances osteogenesis.
    LaMothe JM; Zernicke RF
    J Appl Physiol (1985); 2004 May; 96(5):1788-93. PubMed ID: 14707150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enabling bone formation in the aged skeleton via rest-inserted mechanical loading.
    Srinivasan S; Agans SC; King KA; Moy NY; Poliachik SL; Gross TS
    Bone; 2003 Dec; 33(6):946-55. PubMed ID: 14678854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathetic nervous system does not mediate the load-induced cortical new bone formation.
    de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C
    J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periostal pressure.
    Torrance AG; Mosley JR; Suswillo RF; Lanyon LE
    Calcif Tissue Int; 1994 Mar; 54(3):241-7. PubMed ID: 8055374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disuse rescues the age-impaired adaptive response to external loading in mice.
    Meakin LB; Delisser PJ; Galea GL; Lanyon LE; Price JS
    Osteoporos Int; 2015 Nov; 26(11):2703-8. PubMed ID: 25920749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading.
    Lee KC; Maxwell A; Lanyon LE
    Bone; 2002 Sep; 31(3):407-12. PubMed ID: 12231414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical loading-induced gene expression and BMD changes are different in two inbred mouse strains.
    Kesavan C; Mohan S; Oberholtzer S; Wergedal JE; Baylink DJ
    J Appl Physiol (1985); 2005 Nov; 99(5):1951-7. PubMed ID: 16024522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-amplitude, broad-frequency vibration effects on cortical bone formation in mice.
    Castillo AB; Alam I; Tanaka SM; Levenda J; Li J; Warden SJ; Turner CH
    Bone; 2006 Nov; 39(5):1087-1096. PubMed ID: 16793358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone adaptation to mechanical loading in a mouse model of reduced peripheral sensory nerve function.
    Heffner MA; Genetos DC; Christiansen BA
    PLoS One; 2017; 12(10):e0187354. PubMed ID: 29088267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal β-catenin deletion from Dmp1-expressing osteocytes/osteoblasts reduces structural adaptation to loading, but not periosteal load-induced bone formation.
    Kang KS; Hong JM; Robling AG
    Bone; 2016 Jul; 88():138-145. PubMed ID: 27143110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.