These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25536862)

  • 1. A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition.
    Lin X; Wang F; Chi Y; Huang Q; Yan J
    Waste Manag; 2015 Feb; 36():24-32. PubMed ID: 25536862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swift model for a lower heating value prediction based on wet-based physical components of municipal solid waste.
    Lin CJ; Chyan JM; Chen IM; Wang YT
    Waste Manag; 2013 Feb; 33(2):268-76. PubMed ID: 23238521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of composition characteristics of municipal solid waste in south China].
    Zhang HL; Li XP; Qi JY; Chen YH; Fang JD
    Huan Jing Ke Xue; 2015 Jan; 36(1):325-32. PubMed ID: 25898682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the heating value of MSW with a feed forward neural network.
    Dong C; Jin B; Li D
    Waste Manag; 2003; 23(2):103-6. PubMed ID: 12623084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple regression models for the lower heating value of municipal solid waste in Taiwan.
    Chang YF; Lin CJ; Chyan JM; Chen IM; Chang JE
    J Environ Manage; 2007 Dec; 85(4):891-9. PubMed ID: 17234326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical model for heating value of municipal solid waste in Brazil based on gravimetric composition.
    Drudi KCR; Drudi R; Martins G; Antonio GC; Leite JTC
    Waste Manag; 2019 Mar; 87():782-790. PubMed ID: 31109582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification and comparison of municipal solid waste based on thermochemical characteristics.
    Zhou H; Meng A; Long Y; Li Q; Zhang Y
    J Air Waste Manag Assoc; 2014 May; 64(5):597-616. PubMed ID: 24941708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction for energy content of Taiwan municipal solid waste using multilayer perceptron neural networks.
    Shu HY; Lu HC; Fan HJ; Chang MC; Chen JC
    J Air Waste Manag Assoc; 2006 Jun; 56(6):852-8. PubMed ID: 16805410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia.
    Hla SS; Roberts D
    Waste Manag; 2015 Jul; 41():12-9. PubMed ID: 25882791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.
    Lin H; Ma X
    Waste Manag; 2012 Mar; 32(3):561-7. PubMed ID: 22119515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Municipal solid waste management in Beijing: characteristics and challenges.
    Wang H; Wang C
    Waste Manag Res; 2013 Jan; 31(1):67-72. PubMed ID: 23188712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case study of the characteristics of municipal solid waste in Asturias (Spain): influence of season and source.
    Castrillón L; Fernández-Nava Y; González A; Marañón E
    Waste Manag Res; 2013 Apr; 31(4):428-31. PubMed ID: 23129603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China.
    Chen D; Christensen TH
    Waste Manag Res; 2010 Jun; 28(6):508-19. PubMed ID: 20375128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost recovery of municipal solid waste management in small cities of inland China.
    Ren X; Hu S
    Waste Manag Res; 2014 Apr; 32(4):340-7. PubMed ID: 24633554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis technologies for municipal solid waste: a review.
    Chen D; Yin L; Wang H; He P
    Waste Manag; 2014 Dec; 34(12):2466-86. PubMed ID: 25256662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of residual MSW heating value as a function of waste component recycling.
    Magrinho A; Semiao V
    Waste Manag; 2008 Dec; 28(12):2675-83. PubMed ID: 18313281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed.
    Sun R; Ismail TM; Ren X; Abd El-Salam M
    Waste Manag; 2015 May; 39():166-78. PubMed ID: 25746177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste.
    Shi H; Mahinpey N; Aqsha A; Silbermann R
    Waste Manag; 2016 Feb; 48():34-47. PubMed ID: 26445363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of ingredient and heating value of municipal solid waste.
    Tian WD; Wei XL; Wu DY; Li J; Sheng HZ
    J Environ Sci (China); 2001 Jan; 13(1):87-91. PubMed ID: 11590726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.