These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25536889)

  • 1. Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus.
    Ghaemi R; Rezai P; Iyengar BG; Selvaganapathy PR
    Lab Chip; 2015 Feb; 15(4):1116-22. PubMed ID: 25536889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of microfluidic clamps for immobilizing and imaging of
    Ghaemi R; Rezai P; Nejad FR; Selvaganapathy PR
    Biomicrofluidics; 2017 May; 11(3):034113. PubMed ID: 28580046
    [No Abstract]   [Full Text] [Related]  

  • 3. On chip cryo-anesthesia of Drosophila larvae for high resolution in vivo imaging applications.
    Chaudhury AR; Insolera R; Hwang RD; Fridell YW; Collins C; Chronis N
    Lab Chip; 2017 Jun; 17(13):2303-2322. PubMed ID: 28613308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bending
    Ghaemi R; Acker M; Stosic A; Jacobs R; Selvaganapathy PR
    Lab Chip; 2023 Jan; 23(2):295-305. PubMed ID: 36537269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized microinjection of intact Drosophila melanogaster larva to investigate the effect of serotonin on heart rate.
    Zabihihesari A; Hilliker AJ; Rezai P
    Lab Chip; 2020 Jan; 20(2):343-355. PubMed ID: 31828261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic device for partial immobilization, chemical exposure and behavioural screening of zebrafish larvae.
    Nady A; Peimani AR; Zoidl G; Rezai P
    Lab Chip; 2017 Nov; 17(23):4048-4058. PubMed ID: 29068019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal distribution of pathogenic Wolbachia strain wMelPop in Drosophila melanogaster central nervous system under different temperature conditions.
    Strunov A; Kiseleva E; Gottlieb Y
    J Invertebr Pathol; 2013 Sep; 114(1):22-30. PubMed ID: 23672808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidics-based method for measuring neuronal activity in Drosophila chemosensory neurons.
    van Giesen L; Neagu-Maier GL; Kwon JY; Sprecher SG
    Nat Protoc; 2016 Dec; 11(12):2389-2400. PubMed ID: 27809317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fly-on-a-Chip: Microfluidics for Drosophila melanogaster Studies.
    Zabihihesari A; Hilliker AJ; Rezai P
    Integr Biol (Camb); 2019 Dec; 11(12):425-443. PubMed ID: 31965192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using microfluidics chips for live imaging and study of injury responses in Drosophila larvae.
    Mishra B; Ghannad-Rezaie M; Li J; Wang X; Hao Y; Ye B; Chronis N; Collins CA
    J Vis Exp; 2014 Feb; (84):e50998. PubMed ID: 24562098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open access tool and microfluidic devices for phenotypic quantification of heart function of intact fruit fly and zebrafish larvae.
    Zabihihesari A; Khalili A; Hilliker AJ; Rezai P
    Comput Biol Med; 2021 May; 132():104314. PubMed ID: 33774273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lab-on-chips for manipulation of small-scale organisms to facilitate imaging of neurons and organs.
    Ardeshiri R; Rezai P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5749-5752. PubMed ID: 28269560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of sensory-CNS-motor circuits by serotonin, octopamine, and dopamine in semi-intact Drosophila larva.
    Dasari S; Cooper RL
    Neurosci Res; 2004 Feb; 48(2):221-7. PubMed ID: 14741397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological Recording of The Central Nervous System Activity of Third-Instar Drosophila Melanogaster.
    Swale DR; Gross AD; Coquerel QRR; Bloomquist JR
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30531714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic device for a rapid immobilization of zebrafish larvae in environmental scanning electron microscopy.
    Akagi J; Zhu F; Skommer J; Hall CJ; Crosier PS; Cialkowski M; Wlodkowic D
    Cytometry A; 2015 Mar; 87(3):190-4. PubMed ID: 25483307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Useful road maps: studying Drosophila larva's central nervous system with the help of connectomics.
    Eschbach C; Zlatic M
    Curr Opin Neurobiol; 2020 Dec; 65():129-137. PubMed ID: 33242722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-central nervous system functional imaging in larval Drosophila.
    Lemon WC; Pulver SR; Höckendorf B; McDole K; Branson K; Freeman J; Keller PJ
    Nat Commun; 2015 Aug; 6():7924. PubMed ID: 26263051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae.
    Badre NH; Martin ME; Cooper RL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Mar; 140(3):363-76. PubMed ID: 15792602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroform and desflurane immobilization with recovery of viable Drosophila larvae for confocal imaging.
    Cevik D; Acker M; Arefi P; Ghaemi R; Zhang J; Selvaganapathy PR; Dworkin I; Jacobs JR
    J Insect Physiol; 2019; 117():103900. PubMed ID: 31202852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissection of larval CNS in Drosophila melanogaster.
    Hafer N; Schedl P
    J Vis Exp; 2006 Nov; (1):85. PubMed ID: 18704179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.