These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 25536921)

  • 1. A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system.
    Koh W; Moon HS; Lee SG; Choi JI; Jang SS
    Chemphyschem; 2015 Mar; 16(4):789-95. PubMed ID: 25536921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: a first-principles study.
    Koh W; Choi JI; Donaher K; Lee SG; Jang SS
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1186-94. PubMed ID: 21443264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and diffusion of lithium in a graphene/blue-phosphorus heterostructure and the effect of an external electric field.
    Fan K; Tang J; Wu S; Yang C; Hao J
    Phys Chem Chem Phys; 2016 Dec; 19(1):267-275. PubMed ID: 27901140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries.
    De Souza LA; Monteiro de Castro G; Marques LF; Belchior JC
    J Mol Graph Model; 2021 Nov; 108():107998. PubMed ID: 34371459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li and Na Adsorption on Graphene and Graphene Oxide Examined by Density Functional Theory, Quantum Theory of Atoms in Molecules, and Electron Localization Function.
    Dimakis N; Salas I; Gonzalez L; Vadodaria O; Ruiz K; Bhatti MI
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30791506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical prediction of silicene as a new candidate for the anode of lithium-ion batteries.
    Seyed-Talebi SM; Kazeminezhad I; Beheshtian J
    Phys Chem Chem Phys; 2015 Nov; 17(44):29689-96. PubMed ID: 26477401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles analysis of defect-mediated Li adsorption on graphene.
    Yildirim H; Kinaci A; Zhao ZJ; Chan MK; Greeley JP
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21141-50. PubMed ID: 25394787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.
    Fan X; Zheng WT; Kuo JL; Singh DJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7793-7. PubMed ID: 23863039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dramatic Enhancement of Optoelectronic Properties of Electrophoretically Deposited C
    Chugh S; Adhikari N; Lee JH; Berman D; Echegoyen L; Kaul AB
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24349-24359. PubMed ID: 31141336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of monovalent metal atoms on graphene: a theoretical approach.
    Medeiros PV; de Brito Mota F; Mascarenhas AJ; de Castilho CM
    Nanotechnology; 2010 Mar; 21(11):115701. PubMed ID: 20173231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches.
    Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the work function of buckled boron α-sheet by lithium adsorption: a first-principles investigation.
    Zheng B; Yu HT; Xie Y; Lian YF
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19690-701. PubMed ID: 25333913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium adsorption on graphite from density functional theory calculations.
    Valencia F; Romero AH; Ancilotto F; Silvestrelli PL
    J Phys Chem B; 2006 Aug; 110(30):14832-41. PubMed ID: 16869593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WS
    Bijoy TK; Sudhakaran S; Lee SC
    ACS Omega; 2024 Feb; 9(6):6482-6491. PubMed ID: 38371824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFT calculations of the synergistic effect of λ-MnO
    Zhang H; Du X; Ding S; Wang Q; Chang L; Ma X; Hao X; Pen C
    Phys Chem Chem Phys; 2019 Apr; 21(15):8133-8140. PubMed ID: 30932117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study.
    Mukherjee S; Banwait A; Grixti S; Koratkar N; Singh CV
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5373-5384. PubMed ID: 29350901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics and kinetics of li intercalation in irradiated graphene scaffolds.
    Song J; Ouyang B; Medhekar NV
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12968-74. PubMed ID: 24256350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles calculations on the deposition behavior of Li
    Shen D; Liu Y; Li M; Dong W; Yang F; Wang L; Yang S; Sun W
    Phys Chem Chem Phys; 2021 Oct; 23(38):21817-21824. PubMed ID: 34553716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and electronic properties of alkali-C60 nanoclusters.
    Rabilloud F
    J Phys Chem A; 2010 Jul; 114(26):7241-7. PubMed ID: 20545353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.