BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25537080)

  • 1. Chemically induced coalescence in droplet-based microfluidics.
    Akartuna I; Aubrecht DM; Kodger TE; Weitz DA
    Lab Chip; 2015 Feb; 15(4):1140-4. PubMed ID: 25537080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular simulations of droplet coalescence in oil/water/surfactant systems.
    Rekvig L; Frenkel D
    J Chem Phys; 2007 Oct; 127(13):134701. PubMed ID: 17919037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronized reinjection and coalescence of droplets in microfluidics.
    Lee M; Collins JW; Aubrecht DM; Sperling RA; Solomon L; Ha JW; Yi GR; Weitz DA; Manoharan VN
    Lab Chip; 2014 Feb; 14(3):509-13. PubMed ID: 24292863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreversible fragmentation of a liquid interface for micro-droplet generation by light actuation.
    Diguet A; Li H; Queyriaux N; Chen Y; Baigl D
    Lab Chip; 2011 Aug; 11(16):2666-9. PubMed ID: 21727984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil.
    Chen F; Zhan Y; Geng T; Lian H; Xu P; Lu C
    Anal Chem; 2011 Nov; 83(22):8816-20. PubMed ID: 21967571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of fluorocarbon-in-water emulsions with added triglyceride.
    Weers JG; Arlauskas RA; Tarara TE; Pelura TJ
    Langmuir; 2004 Aug; 20(18):7430-5. PubMed ID: 15323486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants.
    Wagner O; Thiele J; Weinhart M; Mazutis L; Weitz DA; Huck WT; Haag R
    Lab Chip; 2016 Jan; 16(1):65-9. PubMed ID: 26626826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Dynamic Interfacial Tensiometry (μDIT).
    Brosseau Q; Vrignon J; Baret JC
    Soft Matter; 2014 May; 10(17):3066-76. PubMed ID: 24695668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous transfer of phospholipid-coated oil-in-oil and water-in-oil micro-droplets through an oil/water interface.
    Yamada A; Yamanaka T; Hamada T; Hase M; Yoshikawa K; Baigl D
    Langmuir; 2006 Nov; 22(24):9824-8. PubMed ID: 17106968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable and temperature-responsive surfactant-free foamulsions with high oil-volume fraction.
    Patel AR; Drost E; Blijdenstein TB; Velikov KP
    Chemphyschem; 2012 Dec; 13(17):3777-81. PubMed ID: 22907875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip.
    Priest C; Reid MD; Whitby CP
    J Colloid Interface Sci; 2011 Nov; 363(1):301-6. PubMed ID: 21840529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response of carbon black stabilized oil-in-water emulsions to the addition of surfactant solutions.
    Katepalli H; John VT; Bose A
    Langmuir; 2013 Jun; 29(23):6790-7. PubMed ID: 23692631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic method to study demulsification kinetics.
    Krebs T; Schroen K; Boom R
    Lab Chip; 2012 Mar; 12(6):1060-70. PubMed ID: 22215134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic wormlike micelles in mixed nonionic fluorocarbon surfactants and structural transition induced by oils.
    Sharma SC; Shrestha RG; Shrestha LK; Aramaki K
    J Phys Chem B; 2009 Feb; 113(6):1615-22. PubMed ID: 19193166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface structure of sodium dodecyl sulfate surfactant and oil at the oil-in-water droplet liquid/liquid interface: a manifestation of a nonequilibrium surface state.
    de Aguiar HB; Strader ML; de Beer AG; Roke S
    J Phys Chem B; 2011 Mar; 115(12):2970-8. PubMed ID: 21391538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion.
    Ostertag F; Weiss J; McClements DJ
    J Colloid Interface Sci; 2012 Dec; 388(1):95-102. PubMed ID: 22981587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise quantitative addition of multiple reagents into droplets in sequence using glass fiber-induced droplet coalescence.
    Li C; Xu J; Ma B
    Analyst; 2015 Feb; 140(3):701-5. PubMed ID: 25434979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.