BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25537138)

  • 21. Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803.
    Sheng J; Vannela R; Rittmann BE
    Bioresour Technol; 2011 Jan; 102(2):1697-703. PubMed ID: 20739178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.
    Ansari FA; Gupta SK; Shriwastav A; Guldhe A; Rawat I; Bux F
    Environ Sci Pollut Res Int; 2017 Jun; 24(18):15299-15307. PubMed ID: 28502047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrolysis for direct esterification of lipids from wet microalgae.
    Takisawa K; Kanemoto K; Miyazaki T; Kitamura Y
    Bioresour Technol; 2013 Sep; 144():38-43. PubMed ID: 23856586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of a novel lipid extraction process from microalgae.
    Ren X; Wei C; Yan Q; Shan X; Wu M; Zhao X; Song Y
    Sci Rep; 2021 Oct; 11(1):20221. PubMed ID: 34642394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.
    Moradi-Kheibari N; Ahmadzadeh H; Hosseini M
    Bioprocess Biosyst Eng; 2017 Sep; 40(9):1363-1373. PubMed ID: 28593457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extraction Methods Used to Separate Lipids from Microbes.
    Maddi B
    Methods Mol Biol; 2019; 1995():151-159. PubMed ID: 31148127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A biorefinery from Nannochloropsis sp. microalga--extraction of oils and pigments. Production of biohydrogen from the leftover biomass.
    Nobre BP; Villalobos F; Barragán BE; Oliveira AC; Batista AP; Marques PA; Mendes RL; Sovová H; Palavra AF; Gouveia L
    Bioresour Technol; 2013 May; 135():128-36. PubMed ID: 23265815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock.
    Yoo G; Park WK; Kim CW; Choi YE; Yang JW
    Bioresour Technol; 2012 Nov; 123():717-22. PubMed ID: 22939599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioprospecting of microalgae: Proper extraction followed by high performance liquid chromatographic-high resolution mass spectrometric fingerprinting as key tools for successful metabolom characterization.
    Stranska-Zachariasova M; Kastanek P; Dzuman Z; Rubert J; Godula M; Hajslova J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Mar; 1015-1016():22-33. PubMed ID: 26894852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extraction of saponifiable lipids from wet microalgal biomass for biodiesel production.
    Jiménez Callejón MJ; Robles Medina A; Macías Sánchez MD; Hita Peña E; Esteban Cerdán L; González Moreno PA; Molina Grima E
    Bioresour Technol; 2014 Oct; 169():198-205. PubMed ID: 25058294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel cell disruption technique to enhance lipid extraction from microalgae.
    Steriti A; Rossi R; Concas A; Cao G
    Bioresour Technol; 2014 Jul; 164():70-7. PubMed ID: 24836708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures.
    Wahlen BD; Willis RM; Seefeldt LC
    Bioresour Technol; 2011 Feb; 102(3):2724-30. PubMed ID: 21123059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction.
    Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of memberane dispersion for enhanced lipid milking from Botryococcus braunii FACHB 357.
    Zhang F; Cheng LH; Xu XH; Zhang L; Chen HL
    J Biotechnol; 2013 May; 165(1):22-9. PubMed ID: 23466999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Simple, Cost-Efficient Method to Separate Microalgal Lipids from Wet Biomass Using Surface Energy-Modified Membranes.
    Kwak MJ; Yoo Y; Lee HS; Kim J; Yang JW; Han JI; Im SG; Kwon JH
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):600-8. PubMed ID: 26652192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.
    Cheng J; Huang R; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Oct; 170():69-75. PubMed ID: 25125194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of several methods for effective lipid extraction from microalgae.
    Lee JY; Yoo C; Jun SY; Ahn CY; Oh HM
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S75-7. PubMed ID: 19386486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.
    Tran DT; Chen CL; Chang JS
    Bioresour Technol; 2013 May; 135():213-21. PubMed ID: 23131310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production.
    Teo CL; Idris A
    Bioresour Technol; 2014 Nov; 171():477-81. PubMed ID: 25201293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Growth inhibition of the four species of red tide microalgae by extracts from Enteromorpha prolifera extracted with the five solvents].
    Sun YY; Liu XX; Wang CH
    Huan Jing Ke Xue; 2010 Jun; 31(6):1662-9. PubMed ID: 20698287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.