These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25537480)

  • 1. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA.
    Taylor EL; O'Brien PJ
    Biochemistry; 2015 Jan; 54(3):898-908. PubMed ID: 25537480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by human alkyladenine DNA glycosylase.
    Wolfe AE; O'Brien PJ
    Biochemistry; 2009 Dec; 48(48):11357-69. PubMed ID: 19883114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines.
    Rutledge LR; Wetmore SD
    J Am Chem Soc; 2011 Oct; 133(40):16258-69. PubMed ID: 21877721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.
    Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS
    J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.
    Zhao B; O'Brien PJ
    Biochemistry; 2011 May; 50(20):4350-9. PubMed ID: 21491902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution of active site tyrosines with tryptophan alters the free energy for nucleotide flipping by human alkyladenine DNA glycosylase.
    Hendershot JM; Wolfe AE; O'Brien PJ
    Biochemistry; 2011 Mar; 50(11):1864-74. PubMed ID: 21244040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase.
    Stivers JT; Pankiewicz KW; Watanabe KA
    Biochemistry; 1999 Jan; 38(3):952-63. PubMed ID: 9893991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.
    Hendershot JM; O'Brien PJ
    J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site.
    O'Brien PJ; Ellenberger T
    J Biol Chem; 2004 Jun; 279(26):26876-84. PubMed ID: 15126496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-glycosyl bond formation catalyzed by human alkyladenine DNA glycosylase.
    Admiraal SJ; O'Brien PJ
    Biochemistry; 2010 Oct; 49(42):9024-6. PubMed ID: 20873830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG).
    Lee CY; Delaney JC; Kartalou M; Lingaraju GM; Maor-Shoshani A; Essigmann JM; Samson LD
    Biochemistry; 2009 Mar; 48(9):1850-61. PubMed ID: 19219989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-phase studies of purine 3-methyladenine DNA glycosylase II (AlkA) substrates.
    Michelson AZ; Chen M; Wang K; Lee JK
    J Am Chem Soc; 2012 Jun; 134(23):9622-33. PubMed ID: 22554094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-N-glycosylases process novel O-glycosidic sites in DNA.
    Admiraal SJ; O'Brien PJ
    Biochemistry; 2013 Jun; 52(23):4066-74. PubMed ID: 23688261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the Flipping Dynamics of 1, N6-Ethenoadenine in Alkyladenine DNA Glycosylase.
    Liu B; Qi Y; Wang X; Gao X; Yao Y; Zhang L
    J Phys Chem B; 2024 Feb; 128(7):1606-1617. PubMed ID: 38331753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
    Hollis T; Lau A; Ellenberger T
    Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic repair of 5-formyluracil. I. Excision of 5-formyluracil site-specifically incorporated into oligonucleotide substrates by alka protein (Escherichia coli 3-methyladenine DNA glycosylase II).
    Masaoka A; Terato H; Kobayashi M; Honsho A; Ohyama Y; Ide H
    J Biol Chem; 1999 Aug; 274(35):25136-43. PubMed ID: 10455195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroethylnitrosourea-derived ethano cytosine and adenine adducts are substrates for Escherichia coli glycosylases excising analogous etheno adducts.
    Guliaev AB; Singer B; Hang B
    DNA Repair (Amst); 2004 Oct; 3(10):1311-21. PubMed ID: 15336626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of AlkB protein in repair of 1,N⁶-ethenoadenine in Escherichia coli cells.
    Maciejewska AM; Sokołowska B; Nowicki A; Kuśmierek JT
    Mutagenesis; 2011 May; 26(3):401-6. PubMed ID: 21193516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Base excision repair enzymes protect abasic sites in duplex DNA from interstrand cross-links.
    Admiraal SJ; O'Brien PJ
    Biochemistry; 2015 Mar; 54(9):1849-57. PubMed ID: 25679877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base excision and DNA binding activities of human alkyladenine DNA glycosylase are sensitive to the base paired with a lesion.
    Abner CW; Lau AY; Ellenberger T; Bloom LB
    J Biol Chem; 2001 Apr; 276(16):13379-87. PubMed ID: 11278716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.