BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25537501)

  • 1. Design of aromatic-containing cell-penetrating peptide mimics with structurally modified π electronics.
    deRonde BM; Birke A; Tew GN
    Chemistry; 2015 Feb; 21(7):3013-9. PubMed ID: 25537501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Binding and Release by Polymeric Cell-Penetrating Peptide Mimics.
    Davis HC; Posey ND; Tew GN
    Biomacromolecules; 2022 Jan; 23(1):57-66. PubMed ID: 34879198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROMP- and RAFT-Based Guanidinium-Containing Polymers as Scaffolds for Protein Mimic Synthesis.
    Sarapas JM; Backlund CM; deRonde BM; Minter LM; Tew GN
    Chemistry; 2017 May; 23(28):6858-6863. PubMed ID: 28370636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Covalent Carrier Hydrophobicity as a Universal Predictor of Intracellular Protein Activity.
    Hango CR; Backlund CM; Davis HC; Posey ND; Minter LM; Tew GN
    Biomacromolecules; 2021 Jul; 22(7):2850-2863. PubMed ID: 34156837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying Cell Membranes with Anionic Polymer Amphiphiles Potentiates Intracellular Delivery of Cationic Peptides.
    Dailing EA; Kilchrist KV; Tierney JW; Fletcher RB; Evans BC; Duvall CL
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50222-50235. PubMed ID: 33124813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionpair-π interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides.
    Walrant A; Bauzá A; Girardet C; Alves ID; Lecomte S; Illien F; Cardon S; Chaianantakul N; Pallerla M; Burlina F; Frontera A; Sagan S
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183098. PubMed ID: 31676372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Electrostatic and Hydrophobic Surfaces of Aromatic Rings to Enhance Membrane Association and Cell Uptake of Peptides.
    de Araujo AD; Hoang HN; Lim J; Mak JYW; Fairlie DP
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202203995. PubMed ID: 35523729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore.
    Trofimenko E; Grasso G; Heulot M; Chevalier N; Deriu MA; Dubuis G; Arribat Y; Serulla M; Michel S; Vantomme G; Ory F; Dam LC; Puyal J; Amati F; Lüthi A; Danani A; Widmann C
    Elife; 2021 Oct; 10():. PubMed ID: 34713805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding substituent effects in noncovalent interactions involving aromatic rings.
    Wheeler SE
    Acc Chem Res; 2013 Apr; 46(4):1029-38. PubMed ID: 22725832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell penetration: scope and limitations by the application of cell-penetrating peptides.
    Reissmann S
    J Pept Sci; 2014 Oct; 20(10):760-84. PubMed ID: 25112216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative study of interactions between oxygen lone pair and aromatic rings: substituent effect and the importance of closeness of contact.
    Gung BW; Zou Y; Xu Z; Amicangelo JC; Irwin DG; Ma S; Zhou HC
    J Org Chem; 2008 Jan; 73(2):689-93. PubMed ID: 18081348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of the design principles of a cell-penetrating bicylic peptide scaffold.
    Wallbrecher R; Depré L; Verdurmen WP; Bovée-Geurts PH; van Duinkerken RH; Zekveld MJ; Timmerman P; Brock R
    Bioconjug Chem; 2014 May; 25(5):955-64. PubMed ID: 24697151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity?
    Jobin ML; Alves ID
    Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Peptide Sequence on Functional siRNA Delivery and Gene Knockdown with Cyclic Amphipathic Peptide Delivery Agents.
    Jagrosse ML; Baliga UK; Jones CW; Russell JJ; García CI; Najar RA; Rahman A; Dean DA; Nilsson BL
    Mol Pharm; 2023 Dec; 20(12):6090-6103. PubMed ID: 37963105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers.
    Tsuchiya K; Horikoshi K; Fujita M; Hirano M; Miyamoto M; Yokoo H; Demizu Y
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System.
    Jing X; Foged C; Martin-Bertelsen B; Yaghmur A; Knapp KM; Malmsten M; Franzyk H; Nielsen HM
    Mol Pharm; 2016 Jun; 13(6):1739-49. PubMed ID: 26654841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell penetrating peptides: the potent multi-cargo intracellular carriers.
    Kardani K; Milani A; H Shabani S; Bolhassani A
    Expert Opin Drug Deliv; 2019 Nov; 16(11):1227-1258. PubMed ID: 31583914
    [No Abstract]   [Full Text] [Related]  

  • 19. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1.
    Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A
    Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide vectors for the nonviral delivery of nucleic acids.
    Hoyer J; Neundorf I
    Acc Chem Res; 2012 Jul; 45(7):1048-56. PubMed ID: 22455499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.