These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25537593)

  • 1. A portable ultrahigh-vacuum system for advanced synchrotron radiation studies of thin films and nanostructures: EuSi2 nano-islands.
    Ibrahimkutty S; Seiler A; Prüßmann T; Vitova T; Pradip R; Bauder O; Wochner P; Plech A; Baumbach T; Stankov S
    J Synchrotron Radiat; 2015 Jan; 22(1):91-8. PubMed ID: 25537593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultrahigh vacuum system for in situ studies of thin films and nanostructures by nuclear resonance scattering of synchrotron radiation.
    Stankov S; Rüffer R; Sladecek M; Rennhofer M; Sepiol B; Vogl G; Spiridis N; Slezak T; Korecki J
    Rev Sci Instrum; 2008 Apr; 79(4):045108. PubMed ID: 18447553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile vacuum chamber for in situ surface X-ray scattering studies.
    Carbone D; Plantevin O; Gago R; Mocuta C; Bikondoa O; Alija A; Petit L; Djazuli H; Metzger TH
    J Synchrotron Radiat; 2008 Jul; 15(Pt 4):414-9. PubMed ID: 18552436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grazing incidence small-angle X-ray scattering: an advanced scattering technique for the investigation of nanostructured polymer films.
    Müller-Buschbaum P
    Anal Bioanal Chem; 2003 May; 376(1):3-10. PubMed ID: 12734612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A compact UHV deposition system for in situ study of ultrathin films via hard x-ray scattering and spectroscopy.
    Couet S; Diederich T; Schlage K; Röhlsberger R
    Rev Sci Instrum; 2008 Sep; 79(9):093908. PubMed ID: 19044429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh-vacuum facility for high-resolution grazing-angle X-ray diffraction at a vertical wiggler source of synchrotron radiation.
    Sakata O; Tanaka Y; Nikolaenko AM; Hashizume H
    J Synchrotron Radiat; 1998 Jul; 5(Pt 4):1222-6. PubMed ID: 16687825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The In situ growth of Nanostructures on Surfaces (INS) endstation of the ESRF BM32 beamline: a combined UHV-CVD and MBE reactor for in situ X-ray scattering investigations of growing nanoparticles and semiconductor nanowires.
    Cantelli V; Geaymond O; Ulrich O; Zhou T; Blanc N; Renaud G
    J Synchrotron Radiat; 2015 May; 22(3):688-700. PubMed ID: 25931085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ultrahigh-vacuum goniometer for in situ soft X-ray standing-wave analysis of semiconductor surfaces.
    Sugiyama M; Maeyama S
    J Synchrotron Radiat; 1998 May; 5(Pt 3):1029-31. PubMed ID: 15263734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a scanning tunneling microscope for in situ experiments with a synchrotron radiation hard-X-ray microbeam.
    Saito A; Maruyama J; Manabe K; Kitamoto K; Takahashi K; Takami K; Yabashi M; Tanaka Y; Miwa D; Ishii M; Takagi Y; Akai-Kasaya M; Shin S; Ishikawa T; Kuwahara Y; Aono M
    J Synchrotron Radiat; 2006 Mar; 13(Pt 2):216-20. PubMed ID: 16495622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh vacuum/high-pressure flow reactor for surface x-ray diffraction and grazing incidence small angle x-ray scattering studies close to conditions for industrial catalysis.
    van Rijn R; Ackermann MD; Balmes O; Dufrane T; Geluk A; Gonzalez H; Isern H; de Kuyper E; Petit L; Sole VA; Wermeille D; Felici R; Frenken JW
    Rev Sci Instrum; 2010 Jan; 81(1):014101. PubMed ID: 20113115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, magnetic, and electronic properties of EuSi
    Yang G; Chai JS; Bu K; Xu LF; Wang JT
    Phys Chem Chem Phys; 2022 Mar; 24(11):6782-6787. PubMed ID: 35244113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes.
    Klug JA; Weimer MS; Emery JD; Yanguas-Gil A; Seifert S; Schlepütz CM; Martinson AB; Elam JW; Hock AS; Proslier T
    Rev Sci Instrum; 2015 Nov; 86(11):113901. PubMed ID: 26628145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible sample cell for real-time GISAXS, GIWAXS and XRR: design and construction.
    Berlinghof M; Bär C; Haas D; Bertram F; Langner S; Osvet A; Chumakov A; Will J; Schindler T; Zech T; Brabec CJ; Unruh T
    J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1664-1672. PubMed ID: 30407176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition.
    Dendooven J; Solano E; Minjauw MM; Van de Kerckhove K; Coati A; Fonda E; Portale G; Garreau Y; Detavernier C
    Rev Sci Instrum; 2016 Nov; 87(11):113905. PubMed ID: 27910568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of intermediate focus for grazing incidence small and wide angle x-ray scattering experiments at the beamline P03 of PETRA III, DESY.
    Santoro G; Buffet A; Döhrmann R; Yu S; Körstgens V; Müller-Buschbaum P; Gedde U; Hedenqvist M; Roth SV
    Rev Sci Instrum; 2014 Apr; 85(4):043901. PubMed ID: 24784620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-use high/low-temperature and pressure compatible portable chamber for in situ grazing-incidence X-ray scattering studies.
    Ferrer P; Rubio-Zuazo J; Heyman C; Esteban-Betegón F; Castro GR
    J Synchrotron Radiat; 2013 May; 20(Pt 3):474-81. PubMed ID: 23592627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The power of in situ pulsed laser deposition synchrotron characterization for the detection of domain formation during growth of Ba0.5Sr0.5TiO3 on MgO.
    Bauer S; Lazarev S; Molinari A; Breitenstein A; Leufke P; Kruk R; Hahn H; Baumbach T
    J Synchrotron Radiat; 2014 Mar; 21(Pt 2):386-94. PubMed ID: 24562560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III).
    Rawolle M; Körstgens V; Ruderer MA; Metwalli E; Guo S; Herzog G; Benecke G; Schwartzkopf M; Buffet A; Perlich J; Roth SV; Müller-Buschbaum P
    Rev Sci Instrum; 2012 Oct; 83(10):106104. PubMed ID: 23126818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compact and low-weight sputtering unit for in situ investigations of thin film growth at synchrotron radiation beamlines.
    Walter P; Dippel AC; Pflaum K; Wernecke J; van den Hurk J; Blume J; Klemradt U
    Rev Sci Instrum; 2015 May; 86(5):053906. PubMed ID: 26026535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities.
    Abrudan R; Brüssing F; Salikhov R; Meermann J; Radu I; Ryll H; Radu F; Zabel H
    Rev Sci Instrum; 2015 Jun; 86(6):063902. PubMed ID: 26133845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.