These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 25537720)
1. Analysis of Heme Biosynthetic Pathways in a Recombinant Escherichia coli. Pranawidjaja S; Choi SI; Lay BW; Kim P J Microbiol Biotechnol; 2015 Jun; 25(6):880-6. PubMed ID: 25537720 [TBL] [Abstract][Full Text] [Related]
2. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. Lee MJ; Kim HJ; Lee JY; Kwon AS; Jun SY; Kang SH; Kim P J Microbiol Biotechnol; 2013 May; 23(5):668-73. PubMed ID: 23648857 [TBL] [Abstract][Full Text] [Related]
3. Stable and Efficient Biosynthesis of 5-Aminolevulinic Acid Using Plasmid-Free Escherichia coli. Cui Z; Jiang Z; Zhang J; Zheng H; Jiang X; Gong K; Liang Q; Wang Q; Qi Q J Agric Food Chem; 2019 Feb; 67(5):1478-1483. PubMed ID: 30644739 [TBL] [Abstract][Full Text] [Related]
4. Regulation of heme biosynthesis in Escherichia coli. Woodard SI; Dailey HA Arch Biochem Biophys; 1995 Jan; 316(1):110-5. PubMed ID: 7840603 [TBL] [Abstract][Full Text] [Related]
5. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Zhang J; Kang Z; Chen J; Du G Sci Rep; 2015 Feb; 5():8584. PubMed ID: 25716896 [TBL] [Abstract][Full Text] [Related]
6. The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress. Mancini S; Imlay JA Mol Microbiol; 2015 May; 96(4):744-63. PubMed ID: 25664592 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum. Zou Y; Chen T; Feng L; Zhang S; Xing D; Wang Z Biotechnol Lett; 2017 Sep; 39(9):1369-1374. PubMed ID: 28536938 [TBL] [Abstract][Full Text] [Related]
8. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis. Verderber E; Lucast LJ; Van Dehy JA; Cozart P; Etter JB; Best EA J Bacteriol; 1997 Jul; 179(14):4583-90. PubMed ID: 9226269 [TBL] [Abstract][Full Text] [Related]
9. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. Ding W; Weng H; Du G; Chen J; Kang Z J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1127-1135. PubMed ID: 28382525 [TBL] [Abstract][Full Text] [Related]
10. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Zhang J; Weng H; Zhou Z; Du G; Kang Z Bioresour Technol; 2019 Feb; 274():353-360. PubMed ID: 30537593 [TBL] [Abstract][Full Text] [Related]
11. Engineering Escherichia coli for efficient coproduction of polyhydroxyalkanoates and 5-aminolevulinic acid. Zhang X; Zhang J; Xu J; Zhao Q; Wang Q; Qi Q J Ind Microbiol Biotechnol; 2018 Jan; 45(1):43-51. PubMed ID: 29264661 [TBL] [Abstract][Full Text] [Related]
12. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. Li F; Wang Y; Gong K; Wang Q; Liang Q; Qi Q FEMS Microbiol Lett; 2014 Jan; 350(2):209-15. PubMed ID: 24188714 [TBL] [Abstract][Full Text] [Related]
13. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol. Pereira B; Zhang H; De Mey M; Lim CG; Li ZJ; Stephanopoulos G Biotechnol Bioeng; 2016 Feb; 113(2):376-83. PubMed ID: 26221864 [TBL] [Abstract][Full Text] [Related]
14. Expression of the heme biosynthetic pathway genes hemCD, hemH, hemM, and hemA of Escherichia coli. McNicholas PM; Javor G; Darie S; Gunsalus RP FEMS Microbiol Lett; 1997 Jan; 146(1):143-8. PubMed ID: 8997718 [TBL] [Abstract][Full Text] [Related]
15. Heterologous biosynthesis of triterpenoid ambrein in engineered Escherichia coli. Ke D; Caiyin Q; Zhao F; Liu T; Lu W Biotechnol Lett; 2018 Feb; 40(2):399-404. PubMed ID: 29204767 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of a cDNA from soybean and its homolog from Escherichia coli, which both complement the light sensitivity of Escherichia coli hemH mutant strain VS101. Kanjo N; Nakahigashi K; Oeda K; Inokuchi H Genes Genet Syst; 2001 Oct; 76(5):327-34. PubMed ID: 11817648 [TBL] [Abstract][Full Text] [Related]
17. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A. Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681 [TBL] [Abstract][Full Text] [Related]
18. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production. Liu S; Xu JZ; Zhang WG World J Microbiol Biotechnol; 2022 Jan; 38(2):22. PubMed ID: 34989926 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B Fang H; Li D; Kang J; Jiang P; Sun J; Zhang D Nat Commun; 2018 Nov; 9(1):4917. PubMed ID: 30464241 [TBL] [Abstract][Full Text] [Related]
20. Application of Dynamic Regulation to Increase L-Phenylalanine Production in Wu J; Liu Y; Zhao S; Sun J; Jin Z; Zhang D J Microbiol Biotechnol; 2019 Jun; 29(6):923-932. PubMed ID: 31154747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]