BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25537767)

  • 21. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.
    Hu H; Xu S; Yuan Y; Liu R; Wang S; Wan M
    J Acoust Soc Am; 2015 May; 137(5):2563-72. PubMed ID: 25994689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves.
    Tandiono ; Ohl SW; Ow DS; Klaseboer E; Wong VV; Camattari A; Ohl CD
    Lab Chip; 2010 Jul; 10(14):1848-55. PubMed ID: 20596559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emulsification mechanism in an ultrasonic microreactor: Influence of surface roughness and ultrasound frequency.
    Udepurkar AP; Clasen C; Kuhn S
    Ultrason Sonochem; 2023 Mar; 94():106323. PubMed ID: 36774674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasound and microstructures--a promising combination?
    Hübner S; Kressirer S; Kralisch D; Bludszuweit-Philipp C; Lukow K; Jänich I; Schilling A; Hieronymus H; Liebner C; Jähnisch K
    ChemSusChem; 2012 Feb; 5(2):279-88. PubMed ID: 22337650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.
    Desjouy C; Poizat A; Gilles B; Inserra C; Bera JC
    J Acoust Soc Am; 2013 Aug; 134(2):1640-6. PubMed ID: 23927204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Process intensification of the ozone-liquid mass transfer in ultrasonic cavitation-rotational flow interaction coupled-field: Optimization and application.
    Zhang H; Wang B; Xiong M; Zhang L; Ren H; Gao C
    J Environ Manage; 2022 May; 310():114710. PubMed ID: 35220096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasonic mixing in microfluidic channels using integrated transducers.
    Yaralioglu GG; Wygant IO; Marentis TC; Khuri-Yakub BT
    Anal Chem; 2004 Jul; 76(13):3694-8. PubMed ID: 15228343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sound-driven fluid dynamics in pressurized carbon dioxide.
    van Iersel MM; Mettin R; Benes NE; Schwarzer D; Keurentjes JT
    J Chem Phys; 2010 Jul; 133(4):044304. PubMed ID: 20687647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip.
    Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM
    Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes.
    Riera E; Blanco A; García J; Benedito J; Mulet A; Gallego-Juárez JA; Blasco M
    Ultrasonics; 2010 Feb; 50(2):306-9. PubMed ID: 19828171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter.
    Ozeri S; Shmilovitz D; Singer S; Wang CC
    Ultrasonics; 2010 Jun; 50(7):666-74. PubMed ID: 20219226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn.
    Rooze J; Rebrov EV; Schouten JC; Keurentjes JT
    Ultrason Sonochem; 2011 Jan; 18(1):209-15. PubMed ID: 20573535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active control of the depletion boundary layers in microfluidic electrochemical reactors.
    Yoon SK; Fichtl GW; Kenis PJ
    Lab Chip; 2006 Dec; 6(12):1516-24. PubMed ID: 17203155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation.
    Xu Z; Carlson C; Snell J; Eames M; Hananel A; Lopes MB; Raghavan P; Lee CC; Yen CP; Schlesinger D; Kassell NF; Aubry JF; Sheehan J
    J Neurosurg; 2015 Jan; 122(1):152-61. PubMed ID: 25380106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of high frequency ultrasound in the destruction of DDT in contaminated sand and water.
    Thangavadivel K; Megharaj M; Smart RS; Lesniewski PJ; Naidu R
    J Hazard Mater; 2009 Sep; 168(2-3):1380-6. PubMed ID: 19346068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental and theoretical investigation of the mean acoustic pressure in the cavitation field.
    Campos-Pozuelo C; Granger C; Vanhille C; Moussatov A; Dubus B
    Ultrason Sonochem; 2005 Jan; 12(1-2):79-84. PubMed ID: 15474956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of ultrasound as pretreatment for extraction of podophyllotoxin from rhizomes of Podophyllum peltatum.
    Zhao S; Baik OD
    Ultrason Sonochem; 2012 Jan; 19(1):22-31. PubMed ID: 21664168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.