These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25537881)

  • 1. Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer.
    Vercruysse D; Dusa A; Stahl R; Vanmeerbeeck G; de Wijs K; Liu C; Prodanov D; Peumans P; Lagae L
    Lab Chip; 2015 Feb; 15(4):1123-32. PubMed ID: 25537881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and robust Fourier domain-based classification for on-chip lens-free flow cytometry.
    Cornelis B; Blinder D; Jansen B; Lagae L; Schelkens P
    Opt Express; 2018 May; 26(11):14329-14339. PubMed ID: 29877473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.
    Simon P; Frankowski M; Bock N; Neukammer J
    Lab Chip; 2016 Jun; 16(12):2326-38. PubMed ID: 27229300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry.
    Li Y; Cornelis B; Dusa A; Vanmeerbeeck G; Vercruysse D; Sohn E; Blaszkiewicz K; Prodanov D; Schelkens P; Lagae L
    Comput Biol Med; 2018 May; 96():147-156. PubMed ID: 29573668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay.
    Shi W; Guo L; Kasdan H; Tai YC
    Lab Chip; 2013 Apr; 13(7):1257-65. PubMed ID: 23389050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.
    Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H
    Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microflow cytometer exploited for the immunological differentiation of leukocytes.
    Frankowski M; Bock N; Kummrow A; Schädel-Ebner S; Schmidt M; Tuchscheerer A; Neukammer J
    Cytometry A; 2011 Aug; 79(8):613-24. PubMed ID: 21618424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip flow cytometer using integrated photonics for the detection of human leukocytes.
    Jooken S; Zinoviev K; Yurtsever G; De Proft A; de Wijs K; Jafari Z; Lebanov A; Jeevanandam G; Kotyrba M; Gorjup E; Fondu J; Lagae L; Libbrecht S; Van Dorpe P; Verellen N
    Sci Rep; 2024 May; 14(1):10921. PubMed ID: 38769346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sheath-less combined optical and impedance micro-cytometer.
    Spencer D; Elliott G; Morgan H
    Lab Chip; 2014 Aug; 14(16):3064-73. PubMed ID: 24964908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical and experimental characterization of solid-state micropore-based cytometer for detection and enumeration of biological cells.
    Guo J; Chen L; Ai Y; Cheng Y; Li CM; Kang Y; Wang Z
    Electrophoresis; 2015 Mar; 36(5):737-43. PubMed ID: 25488493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical cell counting process characterization in a microfluidic impedance cytometer.
    Hassan U; Bashir R
    Biomed Microdevices; 2014 Oct; 16(5):697-704. PubMed ID: 24898912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer.
    Yun H; Bang H; Min J; Chung C; Chang JK; Han DC
    Lab Chip; 2010 Dec; 10(23):3243-54. PubMed ID: 20941407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An on-chip instrument for white blood cells classification based on a lens-less shadow imaging technique.
    Fang Y; Yu N; Wang R; Su D
    PLoS One; 2017; 12(3):e0174580. PubMed ID: 28350891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscope-based label-free microfluidic cytometry.
    Su X; Kirkwood SE; Gupta M; Marquez-Curtis L; Qiu Y; Janowska-Wieczorek A; Rozmus W; Tsui YY
    Opt Express; 2011 Jan; 19(1):387-98. PubMed ID: 21263578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic cytometer for white blood cell analysis.
    Peng T; Su X; Cheng X; Wei Z; Su X; Li Q
    Cytometry A; 2021 Nov; 99(11):1107-1113. PubMed ID: 34369647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.